Report on Preliminary Site Investigation

Blueys Beach Residential Development - Blueys Beach, NSW

50522033-002

Prepared for Addenbrooke Pty Ltd

12 August 2022

Contact Information

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035

Unit 1 10 Denney Street Broadmeadow NSW 2292

Phone +61 2 4965 4555 Fax +61 2 4965 4666

Document	Information

Prepared for	Addenbrooke Pty Ltd
Project Name	Blueys Beach Residential Development - Blueys Beach, NSW
File Reference	50522033
Job Reference	50522033-002
Date	12 August 2022
Version Number	1

12/08/2022

Author(s):

Kosta Sykiotis	Effective Date	12/08/2022
Geotechnical Engineer		
Approved By:		
111		
Opphas		

Dimce Stojanovski Senior Scientist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	12/08/2022	First Issue to Client	KS	DS

Date Approved

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Executive Summary

Cardno now Stantec Australia Pty Ltd (Stantec) have been engaged by Addenbrooke Pty Ltd (the Client) to prepare a Preliminary Site Investigation (PSI) for the proposed development in the eastern portion of Lot 23 DP 537919, located at Croll Street, Blueys Beach, NSW (the Site).

The purpose of this PSI is to provide the Client with preliminary advice on the contamination status of the Site and subsequent implications for the intended use. The PSI reviews current and historical activities undertaken at the site and provides a preliminary environmental assessment of the potential for soil and/or groundwater contamination to be present on the Site. The following tasks formed the scope of works Stantec undertook to complete the PSI:

- > Defining of the Site extents, features and surrounding area;
- > Review of hydrogeology and groundwater resource use;
- > Review of public records on Site history;
- > Site inspection of the Site and surrounding land;
- > Review of previous intrusive site investigation, sampling and testing undertaken at the Site; and
- > Preparation of a PSI report to advise on the Site's preliminary contamination status.

As part of the initial investigation, multiple soil samples were subject to laboratory analysis for a range of analytical suites to assess site soils against residential guidelines. Analytical testing undertaken comprised; heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs), Total Recoverable Hydrocarbons (TRH), BTEXN (Benzene, Toluene, Ethyl-benzene, Xylenes and Naphthalene), Polycyclic Aromatic Hydrocarbons (PAH), Volatile Organic Compounds (VOC), Polychlorinated Biphenyls (PCB) and asbestos ID in soil.

Results from laboratory testing indicate there were no exceedances of the following thresholds for residential development for the analytes tested as detailed in NEPM 1999 [1]:

- > Health Investigation Levels (HIL's) "residential with garden/accessible soil" (HIL A);
- > Soil Health Screening Levels (HSL) for vapour intrusion recommended for residential (HSL A);
- > Ecological Screening Levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in soil for Urban residential and public open space; and
- Ecological Investigation Levels (EILs) for urban residential and public open space limits. The thresholds adopted include conservative added contaminant limit (ACL) values from Table 1B (1) to 1B (3) NEPM based on pH results of the site soils ranging between 5.5 6.3 and in the absence of CEC and/or % clay content testing.

Based on the review of the Site history, investigation works, Site inspection and laboratory testing, Stantec did not identify any past or current, potentially gross contaminating activities having been undertaken on or adjacent to the Site.

Given the results of this assessment, Stantec recommend the development and implementation of an unexpected finds protocol to address any potential contamination that may be uncovered during construction phase. This has been included as an Appendix in this report. Stantec also recommended inspection is undertaken within the footprint of the former structure (in the southern portion of the lot) during construction to assess the footprint of the previously existing structure for remnant demolition materials/disturbance.

The Site is considered low risk of potential contamination based on the review of Site history, investigation findings and the identified data gaps. Based on the findings of the PSI, Stantec did not identify any contamination or potentially contaminating activities previously undertaken on Site that would render the site unsuitable for its proposed use.

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introdu	iction	1
	1.1	Background	1
	1.2	Purpose & Objectives	1
	1.3	Scope	2
2	Site Ins	spection & Surrounding Environment	3
	2.1	Site Identification	3
	2.2	Site Use & Infrastructure	3
	2.3	Surrounding Environment & Land Uses	5
3	Publish	ned Data	6
	3.1	Regional Geology	6
	3.2	Hydrogeology	7
	3.3	Acid Sulfate Soils	7
	3.4	EPA Records Search	8
4	Site His	story	9
	4.1	General	9
	4.2	Summary of Site History	12
5	Criteria	a for Contamination Assessment	13
6	Site Inv	Site Investigation Methodology	
	6.1	Fieldwork Scope	14
	6.2	Laboratory Testing	14
	6.3	Sampling Methodology	14
7	Areas a	& Contaminants of Potential Concern	16
8	Investi	gation Findings	17
	8.1	Analytical Tables	17
	8.2	Subsurface Conditions	17
	8.3	Analytical Testing	18
	8.4	Quality Control / Quality Assurance	19
9	Conce	ptual Site Model	20
	9.1	Preliminary Conceptual Site Model	20
	9.2	Data Gaps	21
10	Discus	sion	22
	10.1	Site Conditions	22
	10.2	Laboratory Testing	22
	10.3	Areas of Concern	23
11	Conclu	isions and Recommendations	24
	11.1	Recommendations	24
12	Standa	ard of Assessment & Limitations	25
13	Refere	nces	26

Cardno[®]

Appendices

Appendix A	Figures				
	DL . (

- Appendix BPhotographsAppendix CReview Data
- Appendix D Engineering Logs
- Appendix E Laboratory Test Reports
- Appendix F Unexpected Finds protocol

Tables

Table 2-1	Site Details	3
Table 2-2	Site features and Observations	3
Table 2-3	Surrounding Land Use	5
Table 3-1	Summary of Groundwater Bores with 500 m of Site	7
Table 3-2	PoEO Public Register	8
Table 3-3	Former Licensed Activities under the PoEO Act 1997	8
Table 4-1	Historical Title Deeds – Lot 1 DP 717107	9
Table 4-2	Summary of Section 10.7(2) Planning Certificates for Lot 1 DP 717107	10
Table 4-3	Aerial Imagery Review	11
Table 7-1	Site Activities and Potential Contaminants of Concern	16
Table 8-1	Summary of Subsurface Conditions.	18
Table 9-1	Preliminary Conceptual Site Model	20
Table 10-1	Sample Table	23

1 Introduction

1.1 Background

Cardno, now Stantec Australia Pty Ltd (Stantec) was commissioned by Addenbrooke Pty Ltd, to prepare a Preliminary Site Investigation (PSI) report for the proposed subdivision development extents within the eastern portion of Lot 23 DP 537919, located at Boomerang Drive, Blueys Beach NSW.

The overall lot predominately comprises undeveloped bushland, with open grassland in the eastern portion of the lot. The Site assessment area is restricted to the eastern portion of the overall lot, shown in Figure 1 attached in Appendix A (The "Site").

Based on a supplied concept plan prepared and provided by designers from Cardno, Now Stantec, the proposed development comprises the creation of 73 residential allotments, two (2) business opportunity lots, reconstruction of Croll Street for access (off-site) and construction of internal subdivision pavement. The development will be predominantly undertaken in the south-west portion of the lot as shown in Figure 3 attached in Appendix A.

The PSI included a Site inspection, desktop study of available historical data including a review of the MCC Planning Certificate, historical aerial photographs, title deeds and the NSW EPA database.

The assessment also comprised intrusive field investigation and laboratory sampling that was undertaken in conjunction with geotechnical investigation at the Site, reported under cover "Report on Geotechnical Investigation – Blueys Beach Residential Development (50522033-001)".

The assessment was undertaken with reference to the following guidelines:

- 'NSW EPA (2020) guidelines for "Consultants Reporting on Contaminated Land, Contaminated land guidelines' [2].
- > 'National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999' [1].
- > 'State Environmental Planning Policy No 55 Remediation of Land' [3].

1.2 Purpose & Objectives

The purpose of this PSI is to provide the Client with preliminary advice on the contamination status of the site and subsequent implications for the intended use. The PSI reviews current and historical activities undertaken at the site and provides a preliminary environmental assessment of the potential for soil and/or groundwater contamination to be present on the Site.

The objectives of the PSI are to:

- > To the extent practicable, identify the potential for past or present activities on; and surrounding the Site, to have impacted soil or groundwater at the Site.
- > Identify potential areas and contaminants of concern at the Site.
- > Identify potential receptors of concern and assess the potential for the protected beneficial uses of the land to be impacted due to contamination.
- > To make a preliminary assessment of whether contamination is likely to affect the future use or development of the Site.
- > Assess the requirement, if any, for further environmental investigation to assess or make the Site suitable for the proposed use.

1.3 Scope

Stantec carried out the following tasks to satisfy the purpose and objectives of the PSI assessment.

Defined the Site, Features & Surrounds:

- > Obtained the property title description from a Land-data Property Report.
- > Defined the Site boundaries based on title information, available data and established a Site base plan.
- > Identified the Site features.
- > Defined the topography, surface water drainage of the site and its proximity to the nearest surface water body.
- Identified the location of nearby sensitive environments and receptors such as residential, child-care and primary schools, wetlands, streams or rivers.
- > Identified the zoning of the site under the local Planning Scheme.

Hydrogeology & Groundwater Resource Use

> Ascertained the potential utilisation of groundwater at and near the site through a search of the NSW Groundwater Database at NSW Office of Water website.

Review of Public Records on Site History

Review publicly available documents relevant to the site including:

- > The historical chain of land titles.
- > Historical and current maps of the area.
- > Selected historical aerial photos available from the Department of Lands.
- > Undertake review of the NSW EPA Contaminated Lands Register to identify nearby contaminated sites reported to the NSW EPA under section 60 of the CLM (1997).

Site Inspection & Surrounds

- > Confirmed the site features and identified any visible evidence of fuel storage tanks (above or below ground) and other infrastructure with potential to act as a source of soil and/or groundwater.
- > Confirmed the soil type and looked for evidence of site cutting and filling.
- > Assessed the surrounding area (to a radius of approximately 500 m) for potential sources of contamination of soil or groundwater at the site.

Intrusive Site Investigation Sampling & Testing

- Performed limited investigations of soil conditions at 17 selected locations to depths ranging from 0.95-3.5 m below existing ground level (BGL).
- > Tested selected soil samples for a broad range of analytes (by a National Association of Testing Authorities (NATA) accredited laboratory).
- > Compared laboratory concentrations to thresholds detailed within the NEPM [1].

Test pitting was restricted to portions of the site included in the proposed development.

Reporting

- Preparation of this Preliminary Site Investigation (PSI) report to document the assessment activities and results to including findings and recommendations relevant to the objectives of the assessment.
- > Developed a Conceptual Site Model (CSM) for the Site, identifying complete and potential pathways between known and potential sources and receptors. This CSM is incorporated in this investigation report.

2 Site Inspection & Surrounding Environment

2.1 Site Identification

The subject Site details are presented in Table 2-1 below. For Site location, refer to Figure 1 in Appendix.

Table 2-1 Site Details	
Site Address	Boomerang Drive, Blueys Beach NSW 2428
Lot Number and Deposited Plan	Lot 23 DP 537919
Site Area	Approx. 10.6 Ha
Local Government Area	Midcoast Council
Relative Zoning	B1 Neighbourhood Centre
	E2 Environmental Conservation
	E4 Environmental Living
	R2 Low Density Residential
	RU2 Rural Landscape

2.2 Site Use & Infrastructure

A Site inspection was undertaken by Stantec on 24 January 2022 in order to identify and map salient features of the site and the surrounding area. The inspection comprised a walkover assessment and intrusive investigation and sampling. Due to site terrain, portions of the Site were unable to be accessed. This predominately comprised the southernmost portion of the lot, outside the extents of the proposed development. Site features and observations are detailed in Table 2-2 below with Site Photographs attached in Appendix B.

Table 2-2 Site features and Observations	
Item	Observations
Site use	Rural/bushland
Weather condition	Sunny
Site slope and drainage features	 Topographically the Site is located on the eastern face of a northwest to southeast trending ridgeline. Site slopes vary, generally characterised as east to west and are shown through contours shown on Figure 2 attached in Appendix A.
	 The Site is traversed by two gullies, one in the central portion of the Site trending northwest to southeast, and one in the southern portion of the site tending southeast to northwest.
	 The eastern portion of the Site is typically flat, with drainage at the Site comprising overland flow generally to the east, with swale drains noted along the eastern boundary of the Site, trending to the southern portion of the Site.
Nearby water bodies	 Tasman Sea coastline at Blueys Beach approximately 200 m to the east (depending on tide). Three rural dams were noted onsite, as shown in Figure 1 attached in Appendix A.
Site surface coverings	 Generally comprised grassland, mature trees with shrubs and reeds noted within gully lines.
Surface soils	 Surface soils generally comprise Silty/Sandy CLAY and Clayey/Silty SAND.
Site cut and fill	 The Site is typically natural with the exception of existing rural dams noted in the northern, eastern and

Table 2-2 Site features and Observations

Item	Observations
	south eastern portions of the Site. These are shown in Appendix A, and Photograph 1 in Appendix B.
	 Potential minor cut associated with previous building pads for previously existing residential dwellings in the southern portion of the lot. This is outside the proposed development extents.
	 Potential minor cut associated with a previous livestock yard identified in the aerial. No remnants of the livestock yard was identified onsite.
	 A minor isolated pocket of fill material placed on the surface was noted in the central portion of the Site, outlined on Figure 1 in Appendix A and in photograph 2 in Appendix B. The fill material comprised soils with no anthropogenic materials observed during inspection.
	 Mulch stockpiles were noted in the northern portion of the Site, outlined on Figure 1 in Appendix A, and in Photograph 3 in Appendix B.
Buildings	 No existing buildings were noted at the Site, however aerial review indicates an existing residential structure was present in the southern corner of the lot. This is outside the development extents.
Potential asbestos in building materials	 No existing buildings were noted at the Site.
Manufacturing, industrial or chemical processes and infrastructure	 Not observed.
Fuel storage tanks (USTs/ASTs)	 No UST/AST was observed at the Site.
Dangerous goods	Not observed.
Presence of stockpiles, fly tipping or anthropogenic materials	 Stockpiles of mulch were observed in the northern portion of the Site, shown in Figure 1 of Appendix A, and Photograph 3 in Appendix B.
Liquid waste disposal features	Not observed
Evidence of previous site contamination investigations	Not observed
Evidence of land contamination (staining or odours)	Not observed
Evidence of groundwater contamination	Not observed
Groundwater use	Not observed
Vegetation	 Typically, grassland with scattered mature trees. Increased density of mature trees was noted along the western boundary of the Site and within drainage gully lines. Photograph 4 in Appendix B depicts typical vegetation and surface coverage at the Site. Reeds and shrubs were noted within gully lines.
	 Heavily vegetated bushland in the western portion of the Site, outside the proposed developable area.
Site fencing	 Fencing was generally associated with residential properties to the north, south and east.
Additional Notes and Observations	-

2.3 Surrounding Environment & Land Uses

The site is located within a residential district. Land uses around the site are detailed in the Table 2-3 below.

Table 2-3	Surrounding Land Use
Direction	Land Use or Activity
	 Boomerang Drive.
North	 Commercial and residential allotments
	 Undeveloped, densely vegetated area to the north-west.
West	 Undeveloped, densely vegetated area.
Foot	 Residential development and internal road network.
East	 Blueys Beach within 200 m.
South	 Undeveloped, densely vegetated area to the south-west.
30utri	 Residential and rural residential development to the south-east.

The area is serviced by public roads and access to the site is via locked gates located off Croll Street and Newman Avenue.

3 Published Data

3.1 Regional Geology

Reference to the New South Wales (NSW) Seamless Geology dataset accessed on NSW Governments web mapping application "Minview" [4] (See Figure 3-1) indicates the Site is predominantly underlain by the Yagon Siltstone (**Cumy**) formation known to comprise fossiliferous dark siltstone, minor interbeds of mudstone and fossiliferous sandstone and residual soils derived through the decomposition of these rocks.

The boundary with the Koolanock Sandstone (**Cuml**) formation is situated at the western boundary of the site and is known to comprise brown to grey lithic sandstone, interbedded bioturbated siltstone, cream rhyolite flows, upward fining conglomerate, carbonaceous siltstone, minor coal seams and soils derived from the weathering of these.

Small areas within the Site are underlain by different deposits including;

- Coastal Deposits bedrock-mantling dune facies (QP_bdr) within the north-east portion of the Site known to comprise indurated marine-deposited and aeolian-reworked quartz-lithic sand with abundant carbonate, sporadic humic debris in stabilised dunes.
- Coastal Deposits backbarrier flat facies (QH_bf) within the central portion of the eastern boundary in proximity to a gulley line. The deposits are known to comprise fine to medium grained, quartz-lithic sand with carbonate and humic components (marine-deposited), indurated sand, silt, clay, gravel, organic mud and peat.

Figure 3-1 Published Geology at the Site obtained from NSW Government Minview Website [4]

A similar geology search and review can be seen within the Lotsearch report (LS028382 EP) attached as Appendix C.

3.2 Hydrogeology

3.2.1 Groundwater Bores

A search of the NSW Groundwater Database from Department of Primary Industries – Office of Water NSW and Commonwealth of Australia (BOM), found nine (9) wells within 500 m of the Site and eighteen (18) noted between 500 and 2000 m of the Site. Details of the wells found within 500 m of the Site are summarised below in Table 3-1. The searches are present in the Lotsearch Report (LS028382 EP), attached in Appendix C.

Gw ID No.	Туре	Purpose	Final Depth (m)	Elevation (AHD)	SWL (m bgl)	Distance from Site (m)	Direction from Site
GW080157	Bore	Monitoring	14.60	5.60	2.40	80	South East
GW080156	Bore	Monitoring	17.90	12.60	7.60	102	East
GW060983	Spear	Domestic	12.00		-	105	North East
GW080155	Bore	Monitoring	13.30	13.70	7.10	188	North East
GW080158	Bore	Monitoring	13.70	11.50	-	205	East
GW080154	Bore	Monitoring	7.20	7.50	-	366	North East
GW080150	Bore	Monitoring	11.60	6.80	-	388	North East
GW080148	Bore	Monitoring	16.30	9.50	-	466	North East
GW080147	Bore	Monitoring	10.10	96.20	2.50	484	North East

Table 3-1 Summary of Groundwater Bores with 500 m of Site

Notes to Table: AHD: Australian Height Datum Bgl: below ground level SWL: Standing Water Level

3.3 Acid Sulfate Soils

3.3.1 Great Lakes Local Environmental Plan (LEP) 2014

Review of the Great Lakes Local Environmental Plan (LEP) 2014 Mapping indicates the Site is predominantly situated within a Class 5 Acid Sulfate Soils area with an area in the south-east of the Site noted to be Class 4 in proxility to a gulley line.

Works in Class 4 areas that present an environmental risk are "Works more than 2 metres below the natural ground surface and works by which the water-table is likely to be lowered more than 2 metres below the natural ground surface.".

Class 5 indicates that "works within 500 metres of adjacent Class 1, 2, 3, or 4 land that is below 5 metres AHD and by which the watertable is likely to be lowered below 1 metres AHD on adjacent Class 1, 2, 3 or 4 land, present an environmental risk".

3.3.2 NSW Office of Environmental Heritage

A review of the NSW Office of Environment and Heritage, eSPADE v2.1 mapping system [5] Acid Sulphate Soils Risk Map indicates that an area in the south-east portion of the Site is situated within an area of Low Probability (L4) of ASS at greater than 3m below ground level.

3.3.3 Atlas of Australian Acid Sulfate Soils

A review of the Atlas of Australian Acid Sulfate Soils (CSIRO) indicate that the Site is situated in a Class B area. Class B area has a low probability of occurrence in the order of 6 to 70%. The search can be seen in the Lotsearch Report (LS028382 EP), attached in Appendix C.

3.4 EPA Records Search

3.4.1 Contaminated Land Record of Notices

The Contaminated Land Record of Notices is maintained by the Office of Environment and Heritage (OEH) in accordance with Part 5 of the Contaminated Land Management (CLM) Act 1997 and contains regulatory notices issued by the Environment Protection Authority (EPA) in relation to contaminated sites.

A search of NSW EPA Record of Notices revealed no notices listed within 500 m the Site. Search Records are attached in Appendix C as part of the Lotsearch Report (LS028382 EP).

3.4.2 PoEO Public Register

The PoEO Public Register under Section 308 of the Protection of the Environment Operations (PoEO) Act 1997 contains Environment Protection Licences (EPLs), applications and notices issued by the EPA.

The search revealed one (1) licenced activity within 500 m radius of the Site. The search results are present in Table 3-2 below and attached as Appendix C as part of the Lotsearch Report (LS028382 EP).

Table 3-2PoEO Public Register

EPL	Organisation	Name	Address	Activity	Distance
11346	Mid-Coast Council	Waterways and Riparian Areas Within	Mid-Coast Council Local Government Area, Forster, NSW 2428	Other Activities	0 m (On- Site)

Furthermore, three (3) licensed activities now revoked or surrendered were found within 500 m of the Site. The search results are present in the table below and attached as Appendix C, as part of the Lotsearch Report (LS028382 EP).

Table 3-3 Former Licensed Activities under the PoEO Act 1997

License No.	Organisation	Location	Status	Date Issued	Activity	Distance
4653	Luhrmann Environment Management Pty Ltd	Waterways Throughout NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity – Application of Herbicides	0 m (On-Site)
4838	Robert Orchard	Various Waterways throughout NSW Sydney NSW 200	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity – Application of Herbicides	0 m (On-Site)
6630	Sydney Weed & Pest Management Pty Ltd	Waterways Throughout NSW- Prospect, NSW 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity – Application of Herbicides	0 m (On-Site)

3.4.3 List of NSW Contaminated Sites Notified to the EPA

A search of the List of NSW Contaminated Sites Notified to the EPA did not identify contaminated sites within 500 m of the Site. The search results are presented in Appendix C, as part of the Lotsearch Report (LS028382 EP).

4 Site History

4.1 General

The site history comprised review of the Lotsearch Report LS028382 EP, title deed searches, available published data, Section 10.7 planning certificates and aerial photography review, all attached in Appendix C. The site history review is detailed herein.

4.1.1 Historical Title Deeds Search

Historical Title Deeds were obtained to help determine previous land use of the Site. The search indicated the Lot to formerly comprise of two areas (1 and 2) of ownership, as per the attached Cadastral Records Inquiry Report in Appendix C until 1969. A summary of the registered proprietors and occupations where available for Lot 23 DP 537919 (the "Site") is detailed in Table 4-1, below. Historical Title Deeds are attached in Appendix C.

Table 4-1	Historical Title Deeds – Lot 1 DP 717107

Area	Date of Acquisition & Term Held	Registered Proprietor(s) & Occupation	Title Reference at Acquisition
	30.01.1934 (1934 to 1954)	Samuel Thomas Newman (Farmer)	Crown Tenure Crown Lease 1934/1 Taree Now Crown Tenure Conditional Purchase 1946/10 Taree
1 (Southern Portion)	16.09.1954 (1954 to 1969)	Ray Allen Williams (Farmer) Now Raymond Allen Williams	Crown Tenure Conditional Purchase 1946/10 Taree (Book 2311 No. 46) Then Vol 8222 Fol 133 Now Vol 11161 Fol 69
	21.05.1919 (1919 to 1941?)	John James Newman (Died? 1929)	Crown Tenure Conditional Lease 1919/17 Taree
2 (Northern Portion)	1929 (1929 to 1954)	Bertha Rose Newman (Spinster)	Crown Tenure Conditional Lease 1919/17 Taree Then Crown Tenure Conditional Purchase 1941/7 Taree Vol 5791 Fol 190 Vol 5980 Fol 108 Now Vol 6120 Fol 225
	02.09.1954 (1954 to 1969)	Ray Allen Williams (Farmer) Now Raymond Allen Williams	Vol 6120 Fol 225 Then Vol 9270 Fol 209 Now Vol 11161 Fol 69
Whole Subject29.12.1969# Wilmar Enterprises PtyLand(1969 to date)Limited			Vol 11161 Fol 69 Now 23/537919

Denotes current registered proprietor Leases: - NIL

Easements: - NIL

4.1.2 Midcoast Council Planning Information

A Section 10.7(2) Planning Certificate search was undertaken for the Site. No notations of potential contamination issues were detailed in regards to Lot 23 DP 537919 (the "Site").

The complete certificates are attached in Appendix C and summarised within Table 4-2 below.

 Table 4-2
 Summary of Section 10.7(2) Planning Certificates for Lot 1 DP 717107

Matters Pursuant to Section 10.7(2)	Lot 23 DP 537919		
Zoning & Land Use	Five Portions Comprising; B1 Neighbourhood Centre E2 Environmental Conservation E4 Environmental Living R2 Low Density Residential RU2 Rural Landscape		
Development Control Plan (DCP)	Great Lakes Development Control Plan 2014		
Critical Habitat	Land is NOT identified as a critical habitat		
Conservation Area & Environmental Heritage	Land is NOT identified as being within a Conservation area. No environmental planning instrument identifies an item of environmental heritage on the land.		
Coal Mine Subsidence Act 2017	Land is NOT within a proclaimed Mine Subsidence District		
Road Widening & Realignment	Land is NOT affected by road realignment or road widening		
Flood Related Development Controls	Development on this land is NOT subject to flood related development controls associated with an identified Probable Maximum Flood (PMF) within an adopted Council policy or environmental planning instrument.		
Land Reserved for Acquisition	Land is NOT identified in the Land Acquisition layer of the local environmental plan or a draft environmental planning instrument.		
Biodiversity Certified Land	Land is NOT identified as biodiversity certified land.		
Biodiversity Stewardship Site	Land has NOT been notified to Council of the land being a biodiversity stewardship site.		
Native Vegegation Clearing Set Asides	Land has NOT been notified to Council as containing a native vegetation clearing set asides site.		
Bushfire Prone Land	Land IS identified as being bushfire prone land		
Property Vegetation Plans	It has NOT been advised to Council that the land is subject to a property vegetation plan under the Native Vegetation Act 2003		
Loose-fill asbestos information	Council have not been notified of any premises on the subject land that are listed to contain or have contained loose-fill asbestos insulation.		
Contaminated Land	a) The land to which this certificate relates is NOT significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.		
	b) The land to which this certificate relates is NOT subject to a management order within the meaning of the Contaminated Land Management Act 1997.		
	c) The land to which this certificate relates is NOT the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.		
	d) The land to which this certificate relates is NOT the subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.		
	e) Council has NOT been provided with a site audit statement, within the meaning of the Contaminated Land Management Act 1997, for the land to which this Certificate relates.		

4.1.3 Review of the Historical Aerial Photos

Stantec has conducted a review of historical aerial photographs or available aerial imagery, current site inspection and knowledge of the area.

A summary of the interpreted site features is detailed in Table 4-3 below and aerial photographs are provided in C (Lotsearch Report LS028382 EP).

Table 4-3 Aer	ial Imagery Review	
Date	Reference	Observations
1971	Black & White	 Onsite: The subject extent is predominantly open grassland. Two farm dams present – one in the central portion of the Site one in the northern. Small Structure in the southern portion as well as a smaller farm dam. North-west trending track traversing through the site up to the holls. Offsite: Undeveloped bushland to the west and north-west. Clearing to the south-east likely associated with a residential subdivision development. Residential structures and road pavements to the east. Boomerang Drive and a few scattered structures to the north.
1975	Black & White	Onsite: • Generally consistent with 1971 aerial imagery detailed above with the exception of the following: - A small fence area present in the eastern portion of the site, likely to be associated with a small livestock yard. • The construction of a residential structure along the southern boundary of the lot (outside the proposed development). • The construction of a farm dam in the eastern portion of the Site. Offsite: • Generally consistent with 1971 aerial imagery detailed above, with the following exception(s): • Construction of road pavements to the south-east where the clearing was noted in 1971. • Appears to be sealing of Boomerang Drive Pavement to the North. • Increase in residential structure construction to the east and north of the Site.
1980	Black & White	 Onsite: Generally consistent with 1975 aerial imagery detailed above, with the following exception(s): Introduction of an access track (likely gravel). Increase in dense vegetation in the northern and western portions of the site. Appears to be sealing of Boomerang Drive Pavement to the North. Offsite: Generally consistent with 1975 aerial imagery detailed above, with the following exception(s): Increased in residential structures to the east and north-east. Construction of rural-residential structures to the south. Increased development to the north including residential and commercial structures along Boomerang Drive.
1997	Colour	Onsite: • Generally consistent with 1980 aerial imagery detailed above, with the following exception(s): • Decrease in size of the structure (demolition of the main structure) to the south and no more access driveway. • What appears to be minor surficial disturbance, adjacent the potential livestock yard to the east. Offsite:

Date	Reference	Observations
		 Generally consistent with 1980 aerial imagery detailed above, with the following exception(s):
		 Increased in residential and rural residential structures to the north, east and south.
		Onsite:
		 Generally consistent with 1997 aerial imagery detailed above, with the exception of the removal of the cattle yard area towards the Croll Street entrance at the Site.
2003	Colour	Offsite:
2003	Colour	 Generally consistent with 1997 aerial imagery detailed above, with the following exception(s):
		 Increased pavement and residential structure construction to the south and south-east.
		 A few additional residential structures to the east.
		Onsite:
	Colour	 Generally consistent with 2003 aerial imagery detailed above.
2009		Offsite:
		 Generally consistent with 2003 aerial imagery detailed above, with the following exception(s):
		- Increase of residential development north, east and south of Site.
		Onsite:
	Colour	 Generally consistent with 2009 aerial imagery detailed above, with the following exception(s):
2015		- Removal of remaining structure to the south.
2010	Colour	Offsite:
		 Generally consistent with 2009 aerial imagery detailed above, with the following exception(s):
		- Minor addition rural residential property to the south.
		Onsite:
		 Generally consistent with 2015 aerial imagery detailed above.
2024	Colour	Offsite:
2021	Colour	 Generally consistent with 2015 aerial imagery detailed above, with the following exception(s):
		 Minor addition residential structure to the south-east and south and redevelopment of properties to the north.

4.2 Summary of Site History

Based on the available historical data (dated from 1971 to present), Stantec Site inspections and public searches, the Site was predominantly open grass land / pasture. The Site was previously utilised for small rural residential land use (former dwelling located within the south-east corner) with the potential of housing minor livestock / cattle for grazing. At the time of the earliest aerial imagery (1971), the surrounding areas generally appeared to comprise residential properties.

5 Criteria for Contamination Assessment

The assessment criteria used in NSW to evaluate soil analytical results are based on the National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999 [1]. Table 5A of Schedule B (1) Guideline on Investigation Levels for Soil and Groundwater (NEPM 1999) provides default Tier I screening criteria contaminants of concern based on human health and generalised exposure scenarios.

Based on the proposed use of the Site, the following criteria have been adopted:

- > Health Investigation Levels (HIL's) Residential A (HIL A);
- > Soil Health Screening Levels (HSL) for vapour intrusion recommended for Residential land use (HSL A);
- Ecological Screening Levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in soil for Urban Residential Areas; and
- Ecological Investigation Levels (EILs) for Urban Residential Areas. The thresholds adopted include conservative added contaminant limit (ACL) values from Table 1B (1) to 1B (3) NEPM based on pH results of the Site soils ranging between 5.5 - 6.3 and in the absence of CEC and/or % clay content testing.

"Investigation levels" or "screening levels" presented in the NEPM are not intended to be interpreted as "maximum permissible levels", "clean up levels" or "safe levels", rather, they are levels at which further investigation or assessment should be undertaken to provide assurance that unacceptable contamination does not occur to an extent that could cause harm or detriment for users of the land. Subsequent assessment on a site-specific basis often results in higher levels being acceptable. However, since the "investigation levels" or "screening levels" are generally set at conservatively low levels, they are often taken to be the acceptable levels.

Soils identified during the site inspection and sampling were predominantly comprised of Silty/Sandy CLAY / Silty SAND. Based on the observed soil type, the ESL's and HIL's for sand, silt and clay soils have been considered. Sandy soils have been adopted, as NEPM stipulates a conservative approach for determination of observed soil type to be assessed.

6 Site Investigation Methodology

6.1 Fieldwork Scope

Intrusive investigation was undertaken on 24th January 2022 by Stantec in conjunction with the geotechnical investigation and comprised the following.

- Site inspection on the 24^h January 2022 (as detailed in Section 2.2 above).
- Excavation of 17 test pits (TP001-TP017) using a 13.5-tonne excavator fitted with an 800mm toothed bucket to depths ranging from 0.95-3.5 m below existing ground level (bgl), with refusal (including slow progress termination) in the underlying weathered rock encountered in test pits TP002-TP004, TP008-TP012, TP014 and TP015.
- > Drilling of three (3) test bores (TB001-TB003) with a ute mounted drill rig to depths ranging from 1.1-1.2 m BGL within the Croll Street alignment to inform the geotechnical investigation only.
- The test locations are shown on Figure 1 in Appendix A with logs and explanatory notes attached in Appendix D. Data from the Croll Street portion of the investigation has been excluded from the report, as the PSI is limited to the extents shown in Figure 1 in Appendix A.

6.2 Laboratory Testing

Laboratory testing on selected samples recovered during fieldwork comprised the following:

- Six (6) soil contamination tests. The samples were analysed for eight metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs), Total Petroleum Hydrocarbons (TPH), BTEXN (Benzene, Toluene, Ethyl-benzene, Xylenes and Naphthalene), Polycyclic Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCB); and
- > Six (6) asbestos ID in soil tests.

Laboratory analysis and testing was carried out on soil samples by Eurofins, which holds current accreditation with the National Association of Testing Authorities, Australia (NATA) for the analysis performed. Results of laboratory testing are in the laboratory reports attached in Appendix E.

6.3 Sampling Methodology

Environmental sampling was performed according to Stantec standard operating procedures with sampling data recorded on Chain of Custody sheets.

The methodology utilised is as follows:

- > The use of new disposable gloves for the collection of each sample to prevent sample cross contamination;
- Decontamination of all sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and distilled water prior to each sample;
- > Test pits were advanced using a 13.5t excavator;
- The environmental samples from test pits were sampled directly from sidewalls following the preparation of a fresh face prior to sampling. Samples were collected using a stainless-steel trowel which was thoroughly decontaminated prior to advancement and collection of samples.
- > All sampling utensils was decontaminated with Decon 90 solution and a "three bucket wash" procedure between sampling events.
- Soil samples were immediately placed into laboratory containers supplied by Eurofins, sample jars contained zero headspace and the sample details were recorded on the jar label.
- > Samples were sent to the laboratory within recommended holding times; and
- > The samples were preserved in a chilled esky containing ice bricks immediately after sampling and during transport to the laboratory. The laboratory chain of custody documentation was completed and

accompanied the samples during shipment (a copy of the COC is attached to the laboratory test results in Appendix E).

The samples were collected at the intrusive testing locations as shown on Figure 1, attached in Appendix A.

7 Areas & Contaminants of Potential Concern

The assessment has identified several potential sources of contamination (and related Contaminants of Potential Concern – COPC), which are summarised in the Table 7-1 below.

able 7-1 Site A	Cuvilles and Pou	ential Contaminants of Co	ncem	
Area of Environmental Concern (AoEC)	Site Activity / Potential Source		Contaminants of Potential Concern (CoPC)	Comments
		Ons	site Sources	
Area 1-3	Rural Dams	 Machinery use for potential minor cut and fill operations for rural dams. 	8 Heavy MetalsPAH, TRH BTEXNOCP/OPP	 Potential for uncontrolled fill in existing dams. Potential imported fill.
Area 4	Previously existing livestock yard	 Machinery use for potential minor cut. 	 ACM (asbestos containing materials) and lead paint. Heavy Metals OCP/OPP 	 Age of construction indicates potential ACM may have been used in construction.
Area 5	Minor Isolated Fill (< 10 m ³)	 Potentially imported filling. 	 Heavy Metals PAH, TRH BTEXN OCP/OPP Asbestos 	 A minor isolated pocket of fill material placed on the surface noted within the central portion of the Site.
Area 6	Mulch Stockpiles	 Mulch process 	8 Heavy MetalsPAH, TRH BTEXN	 Machinery use during mulching.
Overall Site	Grass Pasture	 Possible cattle grazing. 	OCP/OPP and metals	 Potential use of pesticides
		Offsite Sources	(within Lot 23 DP 537919)	
Area 7	Previously demolished Buildings / Sheds	 Potential hazardous building materials and storage of chemicals. Machinery use for potential minor cut and fill. 	 ACM (asbestos containing materials) and lead paint. Potential storage of pesticides, chemicals & fuels. Metals PAH, TRH BTEXN 	 Age of the structures indicate that ACM may have been used in construction materials. Potential cut / fill for leveling of building platforms for existing residence Potential for uncontrolled fill material present onsite for onsite leveling with building footprints.

8 Investigation Findings

8.1 Analytical Tables

Analytical testing was carried out on soil samples by Eurofins, a National Association of Testing Authorities, Australia (NATA) accredited laboratory.

All testing was undertaken within the terms of their accreditation. Copies of the laboratory analytical reports are shown in Appendix E. The results of laboratory analysis for soil samples are summarised in the analytical comparison tables attached in Appendix E.

8.2 Subsurface Conditions

A summary of subsurface conditions has been provided below, with depths of encountered material provided in Table 8-1 below. For full details of subsurface conditions engineering logs should be referenced, attached in Appendix D.

- > TOPSOIL: Silty/Sandy CLAY / Silty SAND generally of low plasticity / fine to coarse grained, grey and dark brown, with varying fractions of sand and gravel. Typically, the topsoil was of colluvium origin, with the top 0.1 m organically impacted.
- > COLLUVIUM:
 - Silty/Sandy CLAY generally of low to medium plasticity, varying from dark brown, black and grey, with varying fractions of sand, gravel and cobbles, and generally of stiff consistency.
 - Sandy GRAVEL generally fine to coarse and angular, grey mottled yellow, varying fractions of fine to coarse grained sand and cobbles, generally loose to medium dense.
- FILL: Isolated fill that had been placed on the surface was noted in the central portion of the Site (approx.
 < 10 m³) and in the walls for the rural dams. Rural dam walls were also observed to comprise filling.
 Filling predominately comprised Silty/Sandy CLAY and was consistent with Site soils (likely site won).
- > AEOLIAN: SAND generally ranging from fine to coarse grained, pale grey, grey and brown. Aeolian sand was generally loose to medium dense.
- > ALLUVIUM:
 - Silty/Gravelly CLAY, generally medium to high plasticity, grey/pale grey mottled yellow, with varying fractions of fine to coarse rounded gravels. Generally cohesive alluvium material ranged from firm to very stiff.
 - Clayey SAND, generally fine to coarse grained, brown and black, generally loose to medium dense.
- RESIDUAL: CLAY / Silty/Sandy/Gravelly CLAY ranging from low to high plasticity, of varying colours comprising yellow, orange, red and grey, with varying fractions of fine to coarse grained sand, and fine to coarse angular to sub-angular gravel. Residual clays ranged from firm to hard consistency.
- > EXTREMELY WEATHERED MATERIAL:
 - Silty/Gravelly CLAY ranging from low to medium plasticity, pale grey mottled yellow, with varying
 fractions of fine to coarse angular gravel and fine to coarse grained sand, generally of very stiff to
 hard.
 - Clayey GRAVEL generally fine to coarse and angular, grey mottled yellow, varying fractions of fine to coarse grained sand and cobbles, generally loose to medium dense.
- > WEATHERED ROCK: SANDSTONE / SILTSTONE generally highly fractured, with fracturing decreasing with depth prior to refusal.

Depths of subsurface units are provided in Table 4-2 below.

Table 8-1	Summary of Subsurface Conditions.							
Test			DE	PTH OF PROP	FILE (m BGL)			
Bore ID	TOPSOIL	COLLUVIUM	AEOLIAN	ALLUVIAL	RESIDUAL	EWM	ROCK	TERMINATION
TP001	0.1	0.3	-	-	2.2	>3.0	-	3.0
TP002	0.1	0.55	-	-	0.9	-	>1.9	1.9
TP003	0.1	0.5	-	-	-	-	>1.2	1.2
TP004	0.2	0.45	-	-	-	1.3	>1.4	1.4
TP005	0.1	0.3	-	-	>3.0	-	-	3.0
TP006	0.15	-	1.1	>3.3	-	-	-	3.3
TP007	0.2	-	>2.9	-	-	-	-	2.9
TP008	0.1	0.25	-	-	0.9	-	>1.4	1.4
TP009	0.1	0.45	-	-	-	-	>1.3	1.3
TP010	0.1	0.3	-	-	1.45	1.8	>2.15	2.15
TP011	0.2	-	-	-	0.5	-	>0.95	0.95
TP012	0.1	0.5	-	-	1.5	1.8	>2.2	2.2
TP013	0.15	-	-	2.8	>3.5	-	-	3.5
TP014	0.1	0.4	-	-	1.1	1.4	>1.65	1.65
TP015	0.1	0.3	-	-	1.45	1.8	>2.2	2.2
TP016	0.2	-	-	-	2.5	>3.0	-	3.0
TP017	0.1	-	1.4	1.9	>2.2	-	-	2.2
Natao to to								

Table 8-1 Summary of Subsurface Conditions.

Notes to table:

- "-": Not encountered.

- EWM: Extremely Weathered Material.

Groundwater was encountered in TP013 and TP016 at depths of 1.7 m and 1.75 m BGL respectively, notably within test pits undertaken in gullies at the base of natural overland flow paths. Groundwater conditions are likely to fluctuate with variations in climatic and site conditions. For detailed description of subsurface conditions, engineering logs should be referenced attached in Appendix B, together with explanatory notes.

8.3 Analytical Testing

A summary of the chemical testing undertaken is provided below.

8.3.1 Heavy Metals

Appraisal of the results indicates that concentrations of metals within the samples tested were below the thresholds for Residential A guidelines (HIL A) as detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999 [1].

Ecological Investigation Limits (EIL) for tested metals were below thresholds for Urban Residential Areas.

8.3.2 Total Petroleum Hydrocarbons (TPH)

Results for TPH's were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [1] for Residential A Land Use (HSL A) and ESLs.

8.3.3 Benzene Toluene Ethylbenzene Xylenes and Naphthalene (BTEXN)

All results for BTEXN were below the Limit of Reporting (LOR) concentrations for each sample and all samples were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [1] for Residential A guidelines (HIL A) and ESLs.

8.3.4 Polycyclic Aromatic Hydrocarbon (PAH)

Results for PAH's were below the LOR for each sample and below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [1] for Residential A guidelines (HIL A) and ESLs.

8.3.5 Organophosphorus & Organochlorine Pesticides (OPP/OCP) & Polychlorinated Biphenyls (PCB)

Results for OPP/OCC and PCB were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [1] for Residential A guidelines (HIL A) and ESLs.

8.3.6 Asbestos

No asbestos fibres were detected in soil samples collected.

8.4 Quality Control / Quality Assurance

A critical aspect of site investigation is the demonstration of the quality of the data used as the basis for the assessment. This is achieved through a Data Validation process, which includes a review of the following aspects of the data collection process:

- > Project Quality Objectives and Plans.
- > Data Representativeness.
- > Data Precision and Accuracy.
- > Laboratory Performance.
- > Data Comparability.
- > Data Set Completeness.

No field duplicate was collected during the investigation; however, Eurofins have undertaken internal quality assurance testing which involves duplicate analysis on selected samples, method blanks and matrix spikes. Stantec have undertaken a review of the laboratory QA results and interpretation. The laboratory results are contained within the laboratory report sheets and are attached to this report.

Laboratory replicates are generated by subjecting a separate aliquot of sample through the same preparation and analysis procedures as the primary sample. Comparison of the primary sample to the duplicate will yield a precision measurement (expressed as RPD) in a given matrix.

The laboratory acceptance criteria for duplicate samples are as follows:

- > Results less than 5 times LOR preclude acceptance criteria for RPD; and,
- > If results are greater than 5 times the PQL, an RPD of 0-50% is acceptable.

All RPD values were within the acceptance criteria. The chosen analytical laboratory undertook internal QA/QC procedures, which include the analysis of method blanks, internal duplicate samples, laboratory control samples, matrix spikes and surrogate recovery. Additional laboratory QA/QC procedures include sample receipt, logging, storage, preservation and analysis within the method specified holding time.

It was considered that the laboratory QA/QC criteria were within acceptable limits indicating field sampling, storage, handling and decontamination procedures and laboratory preparation and analysis procedures were adequate for the purposes of the environmental investigation. Therefore, the data set used as the basis for the soil assessment is considered valid and complete.

9 Conceptual Site Model

9.1 Preliminary Conceptual Site Model

Generally, a conceptual site model (CSM) provides an assessment of the fate and transport of COPCs relative to site-specific subsurface conditions with regard to their potential risk to human health and the environment. The CSM considers site-specific factors including:

- > Source(s) of contamination,
- > Identification of contaminants of potential concern (COPCs) associated with past (and present) source(s),
- > Vertical, lateral and temporal distribution of COPCs,
- > Site specific lithological information including soil type(s), depth to groundwater, effective porosity, and groundwater flow velocity,
- > Actual or potential receptors considering both current and future land use for both the site and adjacent properties, and any sensitive ecological receptors.

Based on the information sourced in this report, a preliminary CSM has been developed and is outlined in Table 9-1 below. Additional details are included in the sections that follow as necessary.

Conceptual Site Model Element	Description			
Site History	 Rural residential, predominately undeveloped open pasture with potential of housing livestock. 			
Site Current and Future Use	 Previously existing rural residential property in the southern portion of the lot, outside the developable area. The structure has since been removed. Proposed to be developed into a residential subdivision. 			
Site Geology	 Intrusive investigation was undertaken as part of the PSI. Based on Site conditions, published data and previous geotechnical investigations, the subsurface conditions can be generally summarised as isolated filling associated with rural dams and localised building pads and natural materials, typically comprising sand, gravel and clay materials. 			
Site Hydrogeology	 Groundwater assessment was not undertaken as part of the scope, however, was encountered in TP013 and TP016 at depths of 1.7 m and 1.75 m BGL respectively, notably within test pits undertaken in gullies at the base of natural overland flow paths. 			
Area of Environmental Concern (AoEC) - Onsite	 No significant potentially contaminating activities are known to have occurred on site, however the following areas of potential environmental concern were identified: Area 1-3 – Rural dams containing uncontrolled filling. Filling comprised Silty CLAY and appeared to be consistent with subsurface conditions encountered at the Site (likely site sourced). Area 4 – Previous potential livestock yard. No remnants of the livestock yard are present onsite. Area 5 - Minor isolated fill (< 10 m³) comprising Silty/Sandy CLAY. Filling was consistent with encountered subsurface conditions at the Site (likely Site sourced). Area 6 – Mulch stockpile encountered at the Site. Area 7 – Previously existing structure which has been demolished and removed. Review of aerials indicate there may be remnant materials from the demolition on the structure. Overall Site – Potential for cattle grazing. 			
Media Potentially Impacted	 Potentially contaminated surficial soils onsite. Potentially contaminated underlying soils onsite. Potentially contaminated fill materials onsite. 			

Table 9-1 Preliminary Conceptual Site Model

Conceptual Site Model Element	Description
Potential Human Receptors	 Site users / workers / employees (onsite) Site Construction workers (onsite) Future residents (onsite) Local rural residents and surrounding properties (offsite)
Potential Environmental Receptors	 Flora and fauna. Surrounding soils. Nearby waterbodies – Onsite and offsite creek lines, Tasman Sea (200m east of Site).
Potential Exposure Pathways	 Air – inhalation of dusts. Soil – dermal / direct contact. Lateral migration via surficial runoff

9.2 Data Gaps

Based on the inspection, the potential for contamination at this site is not considered to present a significant constraint on the proposed redevelopment of subject site. However, it must be appreciated that assessment was limited to accessible soils (test pit locations) during the investigation within the subject Site, and limited intrusive sampling and laboratory analysis was undertaken.

The following data gaps and uncertainties regarding the assessment are detailed below:

- > Limited intrusive sampling spatially and vertically.
- > No groundwater samples collected; however, groundwater contamination is considered unlikely.
- No sampling along far southern boundary of the Site in the footprint of the previous residential structure due to access issues and overgrown vegetation at the time of the assessment. The footprint is outside the proposed developable area. Based on aerial review, it is likely remnant inground services and possible construction materials are present at the Site.
- > Assessment of the remaining areas of Lot 23 DP 537919, outside the subject Site were not undertaken.

10 Discussion

Review of historical aerial imagery indicates the Site has remained predominately undeveloped, except for the following:

- > A previously existing residential structure in the southern corner of the lot, outside the proposed developable area. The residence was demolished at the time of investigation; however, remnant construction rubble may be present.
- > Previously existing potential livestock yard in the northern portion of the Site at the Croll Street entrance.

Review of the aerial imagery suggests minimal earthworks were undertaken for construction of the previous residential structure. The structure had been demolished at the time of the investigation, with intrusive investigation undertaken within structure footprint. The southern structure footprint was inaccessible due to overgrown vegetation.

10.1 Site Conditions

The subsurface profile encountered across the Site generally comprised colluvial, residual, EWM, alluvial, aeolian and weathered siltstone/sandstone. Generally subsurface materials comprised natural soils, with the exception of the following:

- > Rural farm dam walls, shown on Figure 1 in Appendix A.
- > A minor area of isolated fill (< 10 m³) in the central portion of the Site shown on Figure 1 in Appendix A.
- > Mulch stockpiles in the northern portion of the Site shown on Figure 1 in Appendix A.

During the Site inspection, no indication of staining or olfactory indication of hydrocarbons, nor fibrous sheeting materials were observed within the test pits, filling encountered or on the surface of the Site at the time of inspection. It should be noted the footprint of the previously existing structure in the southern corner of the lot was inaccessible at the time of inspection. Review of aerials indicate remnant demolition material and disturbance within the footprint may be present.

10.2 Laboratory Testing

Sampling was undertaken during test pitting to allow for laboratory testing for specified analytes. Sampling was targeted in areas exposed since development and in portions of the Site proposed to be disturbed. Results from laboratory testing were assessed against the following guidelines as detailed in NEPM 1999 [1]:

- > Health Investigation Levels (HIL's) Residential A (HIL A);
- > Soil Health Screening Levels (HSL) for vapour intrusion recommended for Residential land use (HSL A);
- > Ecological Screening Levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in soil for Urban Residential Areas; and
- Ecological Investigation Levels (EILs) for Urban Residential Areas. The thresholds adopted include conservative added contaminant limit (ACL) values from Table 1B (1) to 1B (3) NEPM based on pH results of the site soils ranging between 5.5 - 6.3 and in the absence of CEC and/or % clay content testing.

All testing was below the adopted criteria for residential developments. Minor detections for TPH C15-C28 and C29-C36 fractions was noted in sample ES6 (although within criteria). No indication of staining or olfactory indication of hydrocarbons, nor fibrous sheeting materials were observed within the isolated filling. It is likely the TPH detections are associated with either earthmoving equipment used to place the material initially or subsequent slashing of the Site. No other detections were noted within the natural or site won fill across the Site.

10.3 Areas of Concern

Areas of concern identified during the investigation have been subject to intrusive investigation and sampling. Areas of concern and subsequent discussion have been provided in Table 10-1 below.

Table 10-1 Sample Table		
Area of Environmental Concern (AoEC)	Site Activity / Potential Source	Comment
Area 1-3	Previous Earthworks for Rural Dams	Based on inspection observations, test pitting and chemical analysis, filling used appears to be Site won.
Area 4	Potential livestock yard	Inspection and test pitting indicates no disturbance or remnant material is present within the footprint of the potential livestock yard. Results from laboratory testing were within the adopted assessment limits.
Area 5	Minor Isolated Fill (< 10 m ³)	Testing undertaken within the filling indicates levels are below the adopted guidelines for residential development, however minor detections for TPH C15-C28 and C29-C36 fractions was noted in sample ES6.
		As no indication of staining or olfactory indication of hydrocarbons were observed within the isolated filling, it is likely the TPH detections are associated with either earthmoving equipment used to place the material initially or subsequent slashing of the Site.
		Fill material was soil, consistent with site soils encountered during the investigation.
Area 6	Mulch Stockpiles	No indication of staining or olfactory indication of contamination was observed within the stockpile.
Area 7	Previously demolished Buildings / Sheds	Aerial review indicates disturbance within the footprint of the previously existing structure. Based on review, there may be remnant in-ground services and demolition material.
Overall Site	Grass Pasture	No detections of OCP/OPP or exceedances of heavy metals were observed in laboratory testing.

11 Conclusions and Recommendations

Stantec has completed a Preliminary Site Investigation of Lot 23 DP 537919, located at Croll Street, Blueys Beach, NSW. The objectives of the investigation were to assess:

- > The potential for the past and present activities undertaken on and adjacent to the Site to have affected soil at the Site.
- > The need for any further assessment or remedial works before definitive conclusions could be made on the suitably of the Site for use.

Results from laboratory testing indicate there were no exceedances of the adopted guidelines for the analytes tested as detailed in NEPM 1999 [1]. Analytes were tested against the following thresholds:

- > Health Investigation Levels (HIL's) Residential A (HIL A);
- > Soil Health Screening Levels (HSL) for vapour intrusion recommended for Residential land use (HSL A);
- Ecological Screening Levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in soil for Urban Residential Areas; and
- Ecological Investigation Levels (EILs) for Urban Residential Areas. The thresholds adopted include conservative added contaminant limit (ACL) values from Table 1B (1) to 1B (3) NEPM based on pH results of the site soils ranging between 5.5 - 6.3 and in the absence of CEC and/or % clay content testing.

Based on the review of the Site history, geotechnical works and Site inspection, Stantec identified no past or current, potentially gross contaminating activities having been undertaken on or adjacent to the Site.

The Site is considered low risk of potential contamination based on the review of Site history, limited intrusive and laboratory works, investigation findings and the identified data gap. As there is a low risk for contamination, an unexpected finds protocol should be implemented and managed during the development.

Stantec has undertaken a Preliminary Site Investigation (PSI) in accordance with the State Environmental Planning Policy No 55 - Remediation of Land (SEPP 55) [3]. Based on the findings of the PSI, Stantec did not identify gross contamination or potentially contaminating activities previously undertaken on Site that would render the Site unsuitable for its proposed use.

11.1 Recommendations

Given the results of this assessment, Stantec recommends the following:

- > The implementation of an unexpected finds protocol to address any potential issues that may be uncovered during construction of the development. An unexpected finds protocol has been developed and attached as Appendix F.
- Inspection within the footprint of the former structure in the southern portion of the lot by a suitably qualified environmental consultant. It is expected the inspection would be undertaken during construction stripping works to assess for any remnant demolition materials. Where remnant materials are transported from Site, materials should be disposed of at a licensed waste facility with appropriate records kept.
- > Any soil to be excavated and transported off Site for disposal require classification in accordance with the NSW EPA Waste Classification Guidelines.
- > Presence of any sundry items to be assessed for offsite disposal or reuse. This can be undertaken during the construction phase.

12 Standard of Assessment & Limitations

This investigation has been undertaken in general accordance with the current "industry standards" for a site investigation for the purpose, objectives and scope identified in this report. These standards are set out in:

- National Environment Protection Council (NEPC) (1999) National Environment Protection (Assessment of Site Contamination) Measure, as amended (registered on 15 May 2013) [1]. This is referred to from here on as "the NEPM" or "NEPM".
- Standards Australia (2005) AS4482.1- 2005: Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds. [6].
- > NSW EPA "Guidelines for Consultants Reporting on Contaminated Sites" [2].

The agreed scope of this investigation has been limited for the current purposes of the Client. The investigation may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained.

This site investigation report is not any of the following:

- > An Environmental Audit Report as defined under NSW Site Auditor Scheme [7].
- > A detailed site investigation (DSI) report sufficient for an Environmental Auditor to be able to conclude a statutory or non-statutory environmental audit.
- > A detailed hydrogeological assessment or an assessment of groundwater contaminants potentially arising from other sites or sources nearby.
- > A waste classification report of soil analytical results from the site.

13 References

- National Environment Protection (Assessment of Site Contamination) Measure 1999, "Schedule B1 Guidelines on Investigation Levels For Soil and Groundwater," National Environment Protection Council (NEPC), 16 May 2013.
- [2] NSW EPA, ""Consultants reporting on contaminated land guidelines"," NSW Environmental Protection Authority, 2020.
- [3] NSW Government, "State Environmental Planning Policy No 55 Remediation of Land (SEPP 55)," 1998.
- [4] NSW Government, "Minview," 2020. [Online]. Available: https://minview.geoscience.nsw.gov.au/. [Accessed 31 January 2022].
- [5] NSW office of Environment and Heritage, "eSPADE v2.1," 2022.
- [6] Standards Australia, "Australian Standard Guide to the investigation and sampling of sites with potentially contamainted soils PArt one: Non-volatile and semi-volatile compounds," Standards Australia, 2005.
- [7] NSW DEC, "Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (3rd Edition)," Department of Environment and Conservation NSW, 2017.

APPENDIX

FIGURES

Wates 2000t Control of the part Rise Fart Branch and Control of the Part Branch and Control		TP014 TP014	TP016 NOT TO SCA	B I I I I I I I I I I I I I I I I I I I
집 All Rights Reserved.	Cardno	KS 7/6/2022 Checked Date	Addenbrooke Pty Ltd	Chabup
This document is produced by Cardno Limited	Shaping the Future	Checked Date IGP 7/6/2022		Status PRELIMINARY
solely for the benefit of and use by the client in accordance with the terms of the retainer. Cardno	Cordeo (NC)M/ACT) Dty Ltd LADN 05 001 145 025	Designed Date	Residential Development	NOT TO BE USED FOR CONSTRUCTION PURPOSES
Limited does not and shall not assume any	Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035 Unit 1, 10 Denney Street	Verified Date	Blueys Beach, NSW	Project Number Scale Size 50522033 1:2000 A3
responsibility or liability whatsoever to any third		Approved	Preliminary Site Investigation	Drawing Number Revision
호텔 party arising out of any use or reliance by third party on the content of this document.	Tel: 02 4965 4555 Fax: 02 4965 4666 Web: www.cardno.com.au		Figure 2 Contour Overlay	Figure 2 001

s. Option E ACM DAVIDaminosBuild(Georlechnical50525033-G+. Darf. Sile. Plan- Bluevs Beach.dwo			A3 4 45 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 46 47 46 46 46 46 46 46 46 46 46 46	TP016	NOT TO SCALE
XREFs: X-Lot Areas_Option C; X-Final Lot Are CAD Flie: A:\Proiects\505\F722033 BLUEYS	© Cardno Limited All Rights Reserved. This document is produced by Cardno Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Cardno Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.	Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035 Unit 1, 10 Denney Street Broadmeadow, NSW 2292 Tel: 02 4965 4555 Fax: 02 4965 4666 Web: www.cardno.com.au	KS 7/6/2022	Project Blueys Beach Residential Development	Status PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES Project Number Scale 50522033 1:2000 Drawing Number Revision Figure 3 001

APPENDIX

PHOTOGRAPHS

Photograph 1: Rural dam noted in northern portion of the Site.

Photograph 2: Isolated fill material placed on surface in the central portion of the Site.

Photograph 3: Mulch stockpiles in northern portion of the Site.

Photograph 4: Typical Site Coverings - grass pasture and mature trees.

APPENDIX

REVIEW DATA

Date: 18 Jan 2022 16:13:09 Reference: LS028382 EP Address: Boomerang Drive, Blueys Beach, NSW 2428

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)		No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	04/01/2022	04/01/2022	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	10/12/2021	09/12/2021	Monthly	1000m	0	0	0
Contaminated Land Records of Notice	Environment Protection Authority	11/01/2022	11/01/2022	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	07/01/2022	11/10/2017	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	13/07/2012	Annually	1000m	0	0	1
EPA PFAS Investigation Program	Environment Protection Authority	14/12/2021	14/07/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	29/10/2021	29/10/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	29/10/2021	29/10/2021	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	06/01/2022	06/01/2022	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	06/01/2022	06/01/2022	Quarterly	2000m	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	02/02/2021	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	21/12/2021	21/12/2021	Monthly	1000m	1	1	1
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	21/12/2021	21/12/2021	Monthly	1000m	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	21/12/2021	21/12/2021	Monthly	1000m	3	3	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	2	2
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	14	14
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	0
Points of Interest	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	2	13
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Major Easements	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	0	2
State Forest	Forestry Corporation of NSW	25/02/2021	14/02/2021	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	22/01/2021	11/12/2020	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000m	1	1	1
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	26/10/2020	21/02/2018		1000m	0	0	0
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000m	0	1	27

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Geological Units 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	3	4	6
Geological Structures 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	2
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	07/01/2022	17/12/2021	Monthly	500m	2	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	2	2
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	0	0	0
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	07/01/2022	07/01/2022	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	07/01/2022	07/01/2022	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	07/01/2022	07/01/2022	Monthly	1000m	2	2	5
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	15/11/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	15/11/2021	05/11/2021	Monthly	1000m	5	7	12
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	19/08/2021	25/06/2021	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	07/01/2022	17/12/2021	Monthly	1000m	0	0	0
Bush Fire Prone Land	NSW Rural Fire Service	10/01/2022	08/12/2021	Weekly	1000m	3	3	3
Eastern Bushland Database (North Region)	NSW Office of Environment & Heritage	24/07/2016	01/01/1991	None planned	1000m	1	2	2
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	24/02/2021	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Annually	1000m	5	5	6
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	7	8	13
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	17/01/2022	17/01/2022	Weekly	10000m	-	-	-

Site Diagram

Contaminated Land

Boomerang Drive, Blueys Beach, NSW 2428

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

Boomerang Drive, Blueys Beach, NSW 2428

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

Boomerang Drive, Blueys Beach, NSW 2428

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Loc Conf	Dist	Direction
N/A	No records in buffer										

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
4361	Caltex	Caltex Pacific Palms	339 Boomerang Drive	Blueys Beach	Petrol Station	Operational		25/07/2011	Premise Match	773m	North West

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

Boomerang Drive, Blueys Beach, NSW 2428

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

Boomerang Drive, Blueys Beach, NSW 2428

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

Boomerang Drive, Blueys Beach, NSW 2428

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

EPA Activities

Boomerang Drive, Blueys Beach, NSW 2428

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
11346	MID-COAST COUNCIL	WATERWAYS AND RIPARIAN AREAS WITHIN	MID-COAST COUNCIL LOCAL GOVERNMENT AREA, FORSTER, NSW 2428	FORSTER	Other activities	Network of Features	0m	On-site

POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

Boomerang Drive, Blueys Beach, NSW 2428

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	On-site
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	On-site
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	On-site

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

Boomerang Drive, Blueys Beach, NSW 2428

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	PROPERTY MANAGEMENT.	Pacific Palms Real Estate., 209 Boomerang Dr., Pacific Palms 2428	75942	1991	Premise Match	41m	North East
	REAL ESTATE AGENTS.	Pacific Palms Real Estate., 209 Boomerang Dr., Pacific Palms 2428	75964	1991	Premise Match	41m	North East

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
2	CLOTHING - RETAIL - LADIES &/OR GIRLS WEAR.	Boomerang Beach & Surf Co., Boomerang Dr., Blueys Beach 2428	75382	1991	Road Match	0m
	FISH BAIT SUPPLIERS.	Boomerang Beach & Surf Co., Boomerang Dr., Blueys Beach 2428	75507	1991	Road Match	Om
	FISHING TACKLE RETAILERS.	Boomerang Beach & Surf Co., Boomerang Dr., Blueys Beach 2428	75526	1991	Road Match	0m
	GIFT SHOPS.	Boomerang Beach & Surf Co., Boomerang Dr., Blueys Beach 2428	75590	1991	Road Match	0m
	SPORTS GOODS - RETAIL	Boomerang Beach & Surf Co., Boomerang Dr., Blueys Beach 2428	76042	1991	Road Match	0m
	SURFBOARDS &/OR SURFING EQUIPMENT MFRS. &/OR DISTS.	Boomerang Beach & Surf Co., Boomerang Dr., Blueys Beach 2428	76066	1991	Road Match	Om
	CLOTHING - RETAIL - LADIES &/OR GIRLS WEAR	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166639	1982	Road Match	0m
	FISH BAIT SUPPLIERS.	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166664	1982	Road Match	0m
	FISHING TACKLE RETAILERS.	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166680	1982	Road Match	0m
	GIFT SHOPS.	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166703	1982	Road Match	0m
	HIRING SERVICES.	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166739	1982	Road Match	0m
	LOCKSMITHS &/OR KEY CUTTERS.	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166780	1982	Road Match	0m
	SPORTING GOODS - RETAIL	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166912	1982	Road Match	0m
	SURFING EQUIPMENT MFRS	Bits N' Pieces, Boomerang Dr., Blueys Beach, Pacific Palms, via Forster 2428	166922	1982	Road Match	0m

Historical Business Directories

Boomerang Drive, Blueys Beach, NSW 2428

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer					

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

N	lap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
Ν	I/A	No records in buffer					

Topographic Map 2015

Historical Map 1981

Historical Map c.1939

Topographic Features

Topographic Features

Boomerang Drive, Blueys Beach, NSW 2428

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
75035	Tourist Information Centre	PACIFIC PALMS TOURIST INFORMATION CENTRE	45m	North East
74400	Village	BLUEYS BEACH	97m	North East
74029	Beach	BLUEYS BEACH	244m	East
75263	Tourist Park / Home Village	MOBYS BEACHSIDE RETREAT	398m	North East
74062	Headland	BLUEYS HEAD	454m	South
73836	Lookout	BOOMERANG POINT LOOKOUT	515m	East
74399	Village	BOOMERANG BEACH	756m	North East
74059	Headland	BOOMERANG POINT	776m	East
73834	Sports Field	PACIFIC PALMS SPORTS OVAL	788m	North East
76333	Tourist Park / Home Village	INGENIA HOLIDAYS BLUEYS BEACH	799m	North West
74018	Primary School	PACIFIC PALMS PUBLIC SCHOOL	801m	North East
75852	Sports Court	TENNIS COURT	874m	North
76075	Sports Court	TENNIS COURT	876m	North East

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en
Topographic Features

Boomerang Drive, Blueys Beach, NSW 2428

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
154781715	Primary	Right of way	Variable	317m	North
166366285	Primary	Right of way	6m	941m	North East

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

Boomerang Drive, Blueys Beach, NSW 2428

State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

Boomerang Drive, Blueys Beach, NSW 2428

Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Fractured or fissured, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018

Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

Boomerang Drive, Blueys Beach, NSW 2428

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW080 157		Bore	P.W.D.		Monitoring Bore		11/02/1983	14.60	14.60		2.40		5.60	80m	South East
GW080 156		Bore	P.W.D.		Monitoring Bore		11/02/1983	17.90	17.90		7.60		12.60	102m	East
GW060 983	20BL132 604	Spear	Private	Domestic	Domestic		01/06/1985	12.00	15.00					105m	North East
GW080 155		Bore	P.W.D.		Monitoring Bore		11/02/1983	13.30	13.30		7.10		13.70	188m	North East
GW080 158		Bore	P.W.D.		Monitoring Bore		11/02/1983	13.70	13.70				11.50	205m	East
GW080 154		Bore	P.W.D.		Monitoring Bore		11/02/1983	7.20	7.20				7.50	366m	North East
GW080 150		Bore	P.W.D.		Monitoring Bore		11/02/1983	11.60	11.60				6.80	388m	North East
GW080 148		Bore	P.W.D.		Monitoring Bore		11/02/1983	16.30	16.30				9.50	466m	North East
GW080 147		Bore	P.W.D.		Monitoring Bore		11/02/1983	10.10	10.10		2.50		6.20	484m	North East
GW078 435	20BL167 458	Bore		Domestic	Domestic		01/01/1988	16.40	16.40		4.90	1.000		525m	North East
GW080 146		Bore	P.W.D.		Monitoring Bore		11/02/1983	21.00	21.00		8.90		12.00	671m	North East
GW080 151		Bore	P.W.D.		Monitoring Bore		11/02/1983	16.30	16.30				10.00	916m	North East
GW080 152		Bore	Private		Monitoring Bore		11/02/1983	16.30	16.30				10.40	1055m	North East
GW202 930	20WA21 2732	Bore	Private	Domestic	Domestic		10/04/2013	25.00	25.00					1193m	North East
GW080 145		Bore	P.W.D.		Monitoring Bore		11/02/1983	13.30	13.30		7.90		9.50	1212m	North East
GW080 149		Bore	P.W.D.		Monitoring Bore		11/02/1983	17.50	17.50				10.40	1437m	North East
GW080 153		Bore	P.W.D.		Monitoring Bore		11/02/1983	10.20	10.20		2.40		6.90	1438m	North East
GW044 655	20BL102 621	Spear	Private	Domestic	General Use		01/01/1975	11.60	11.60	Other				1471m	North East
GW080 144		Bore	P.W.D.		Monitoring Bore		11/02/1983	13.40	13.40		7.10		12.00	1602m	North East
209100 09					UNK								5.28	1618m	North
GW044 550	20BL104 211	Bore	Private	Domestic	Domestic		01/08/1975	10.10	10.10					1627m	North
209100 14					UNK								7.06	1633m	West
GW056 109	20BL122 137	Bore open thru rock	Private	Domestic	Domestic		01/11/1981	45.70	45.70	3001- 7000 ppm				1646m	North
209100 31					UNK								5.25	1669m	North West
GW061 312	20BL133 465	Bore	Private	Domestic, Stock	Domestic, Stock		01/10/1985	12.20	12.20	1001- 3000 ppm				1672m	North
GW032 531	20BL024 890	Bore open thru rock	Private	Waste Disposal	Domestic		01/02/1970	25.00	25.00					1733m	North

GW No.	Licence No		Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)			Elev (AHD)	Dist	Dir
GW061 420	20BL133 723	Bore	Private	Domestic, Stock	Domestic, Stock		08/11/1985	24.38	24.40	2700	3.35	0.660		1771m	North

Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

Boomerang Drive, Blueys Beach, NSW 2428

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW080157	0.00m-2.40m Sand, quartz, clean, poorly sorted, subangular-rounded, 0.25 mm grainsize 2.40m-5.40m Sand, quartz, clean, some clay nodules, mod well sorted, rounded, 0.3 mm grainsize 5.40m-14.60m Clay, grey to yellow, very stiff	80m	South East
GW080156	0.00m-8.60m Sand, quartz, clean, trace silt, mod well sorted, subangular-rounded, 0.3 mm grainsize 8.60m-10.20m Sand, quartz, silty, soft, indurated, humate coated, mod well sorted, rounded, 0.3 mm grainsize 10.20m-11.40m Sand, quartz, clean 11.40m-14.00m Sand, quartz, silty, soft, indurated, humate coated, mod well sorted, rounded, 0.3 mm grainsize 14.00m-14.80m Sand, quartz, silty, clean, mod well sorted, subangular-rounded, 0.4 mm grainsize 14.80m-17.90m Clay, dark brown, stiff	102m	East
GW060983	0.00m-1.00m Sand Grey 1.00m-9.00m Sand White 9.00m-10.00m Sand Dark Brown Indurated 10.00m-12.00m Sand Water Supply 12.00m-15.00m Clay	105m	North East
GW080155	0.00m-10.00m Sand, quartz, clean, mod to well sorted, subangular to rounded, 0.25-0.3 mm grainsize 10.00m-11.50m Sand, quartz, silty, soft, indurated, humate coated, mod well sorted, subangular-rounded, 0.3 mm grainsize 11.50m-13.30m Clay, sandy, green, stiff, grading into bedrock	188m	North East
GW080158	0.00m-7.30m Sand, clean 7.30m-8.40m Sand, silty, soft, indurated 8.40m-9.40m Sand, silty, hard, indurated 9.40m-10.40m Sand, silty, soft, indurated 10.40m-13.70m Clay, green grey, stiff, grading into bedrock	205m	East
GW080154	0.00m-7.20m Clay grading into weathered bedrock, bit refusal at bottom	366m	North East
GW080150	0.00m-6.30m Sand, clean 6.30m-10.10m Sand, silty, firm and indurated 10.10m-11.60m Sand, quartz, clean, poorly sorted, subangular to rounded, 0.4 mm grainsize	388m	North East
GW080148	0.00m-2.50m Sand, clean 2.50m-3.50m Soil 3.50m-9.50m Sand, clean 9.50m-16.30m Clay, yellow grey grading into weathered bedrock	466m	North East
GW080147	0.00m-1.90m Sand, quartz, silty, grey, mod. well sorted, rounded, 0.35 mm in grainsize 1.90m-7.00m Sand, quartz, silty, d. brown, firm, indurated, humate coated, well sorted, rounded, 0.3 mm in grainsize 7.00m-8.40m Sand, quartz, silty, soft, indurated 8.40m-8.60m Sand, quartz, silty, hard, indurated, v. dark brown, humate coated, well sorted, rounded, 0.3 mm grainsize 8.60m-10.10m Sand, quartz, clean, mod well sorted, subangular-rounded, 0.3 mm grainsize	484m	North East
GW078435	0.00m-3.00m sand, firm 3.00m-5.40m indurated sand, firm 5.40m-7.90m sand 7.90m-13.60m indurated, banded 13.60m-16.40m sand, clayey dark	525m	North East
GW080146	0.00m-5.60m Sand, quartz, light grey, mod. well to poorly sorted, subangular to rounded, trace iron stainings, 0.3 mm grainsize 5.60m-7.70m Sand, quartz, silty, v. dark grey, firm, indurated, mod. well to poorly sorted, subangular to rounded, 0.4 mm grainsiz 7.70m-9.30m Sand, quartz, silty, med. grey, mod. well sorted, rounded, 0.3 mm in grainsize 9.30m-9.70m Sand, quartz, silty, clean, light grey, poorly sorted, rounded, 0.35 mm grainsize 9.70m-14.20m Sand, quartz, silty, d. grey, soft, indurated, poorly sorted, subangular-rounded, humate coated, cem. nodules, 0.35 mm g 14.20m-21.00m Sand, quartz, silty, red brown, banded, indurated, mod well sorted, subangular-rounded, humate coated, 0.4 mm grainsize	671m	North East
GW080151	0.00m-5.00m Sand, clean 5.00m-9.20m Sand, silty, firm, indurated 9.20m-10.20m Sand, silty, hard, indurated 10.20m-14.80m Sand, silty, banded, indurated 14.80m-15.30m Sand, peaty and silty 15.30m-16.30m Sand, clean quartz, moderately well sorted, subangular to rounded, 0.4 mm grainsize	916m	North East

Groundwater No	Drillers Log	Distance	Direction
GW080152	0.00m-11.70m Sand, quartz, silty, poorly sorted, subangular to rounded, 0.35 - 0.4 mm grainsize 11.70m-12.40m Sand, quartz, silty, soft, indurated, poorly sorted, subangular to rounded, humate coated, 0.4 mm grainsize 12.40m-14.80m Sand,quartz, trace silt, poorly sorted, subangular to rounded, 0.35 mm grainsize 14.80m-15.60m Sand, quartz, silty, hard, indurated, poorly sorted, subangular to rounded, cemented nodules, 0.4 mm grainsize 15.60m-16.30m Sand, quartz, trace silt, poorly sorted, subangular to rounded, 0.35 mm grainsize	1055m	North East
GW202930	0.00m-0.10m Topsoil 0.10m-12.20m Sand 12.20m-13.50m Rock; coffee rock 13.50m-22.30m Sand; white 22.30m-25.00m Gravel; river gravel	1193m	North East
GW080145	0.00m-6.50m Sand, quartz, clean, light grey, 0.3 mm grainsize 6.50m-11.20m Sand, quartz, silty, soft, indurated, humate coated, rootlets, cemented nodules, 0.35 mm grainsize 11.20m-13.30m Sand, quartz, dark grey, hard, silty, indurated, humate coated, cemented nodules, 0.35 mm grainsize	1212m	North East
GW080149	0.00m-1.80m Sand, clean 1.80m-17.50m Sand, silty, humate coated, soft, indurated, moderately well sorted, rounded, 0.4 mm grainsize	1437m	North East
GW080153	0.00m-4.10m Sand, quartz, clean,moderately well sorted, sub angular to rounded, 0.3 mm grainsize 4.10m-6.00m Sand, silty, soft and indurated, moderately well sorted, rounded, 0.3 mm grainsize 6.00m-7.30m Sand, quartz, silty, moderately well sorted, sub angular to rounded, humate coated, hard and indurated, 0.3 mm grainsize 7.30m-9.90m Sand, quartz, silty, soft and indurated, well sorted, rounded, 0.3 mm grainsize 9.90m-10.20m Sand, quartz, clean, well sorted, rounded, 0.3 mm grainsize	1438m	North East
GW044655	0.00m-2.44m Sand White 2.44m-11.58m Sand Black Sloppy Swamp Water Supply	1471m	North East
GW080144	0.00m-5.60m Sand, quartz, clean, moderately well sorted, subangular to rounded, 0.4 mm grainsize 5.60m-13.10m Sand, silty, dark coffee, soft and indurated, well sorted, rounded, 0.4 mm grainsize 13.10m-13.40m Clay, sandy, bedrock	1602m	North East
GW044550	0.00m-0.61m Soil 0.61m-1.22m Sand White 1.22m-4.88m Rock Dark Brown Soft 4.88m-9.75m Sand Decomposed Humus Water Supply 9.75m-10.06m Clay Grey Shale Seams	1627m	North
GW056109	0.00m-6.10m Basalt Soft 6.10m-45.70m Basalt Black Water Supply	1646m	North
GW061312	0.00m-2.74m Clay 2.74m-9.14m Mudstone 9.14m-9.75m Mudstone Weathered Water Supply 9.75m-12.19m Mudstone	1672m	North
GW032531	0.00m-0.30m Soil 0.30m-2.44m Clay 2.44m-24.99m Basalt Very Hard Water Supply	1733m	North
GW061420	0.00m-6.70m Clay 6.70m-12.19m Conglomerate Weathered 12.19m-13.00m Sandstone Weathered Water Supply 13.00m-21.33m Conglomerate 21.33m-22.00m Conglomerate Weathered Water Supply 22.00m-24.38m Conglomerate	1771m	North

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology

Geology

Boomerang Drive, Blueys Beach, NSW 2428

Geological Units 1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dist	Dir
Cly	Black-grey, fossiliferous & bioturbated thinly bedded siltstone & mudstone with minor sandstone interbeds. A volcanic member occurs upper parts to the west & deformed & chaotically slumped beds are present in lower parts of the unit	Yagon Siltstone			Carboniferou s	siltstone	Bulahdelah	Om	On-site
Qhds	Transgressive dunes	unnamed			Quaternary	sand	Bulahdelah	0m	On-site
Cla3	Brown to grey lithic sandstone, interbedded bioturbated siltstone, cream rhyolite flows, upward fining conglomerate, carbonaceous siltstone and minor coal seams	Koolanock Sandstone			Carboniferou s	sandstone	Bulahdelah	Om	On-site
Qhbs	Beach, foredune sands and foredune ridge (locally includes some estuarine deposits)	unnamed			Quaternary	sand	Bulahdelah	46m	East
Qpds	Transgressive dunes	unnamed			Quaternary	sand	Bulahdelah	175m	North
Qpem	Estuarine basin muds and intertidal deposits	unnamed			Quaternary	mud	Bulahdelah	813m	North West

Geological Structures 1:100,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Distance	Direction
N/A	No records in buffer				

Geological Data Source : NSW Department of Industry, Resources & Energy © State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

Boomerang Drive, Blueys Beach, NSW 2428

Naturally Occurring Asbestos Potential

Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Atlas of Australian Soils

Soils

Boomerang Drive, Blueys Beach, NSW 2428

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Tb48	Sodosol	Hilly to steep hilly areas: chief soils are hard acidic yellow mottled soils (Dy3.41) with various shallow soils (Gn2.24) and/or (Um4.2) or (Um6.21) on hill crests. Other soils including (Uf6) soils may occur on some mid and lower slopes.	0m	On-site
Cb28	Podosol	Undulating coastal plains (ridge and swale sand plains with swampy hollows), tracts of dunes: chief soils are various leached sands (Uc2.3) including (Uc2.33). Associated are tracts of relatively stable dunes of leached sand (Uc2.2); swampy hollows of various acid peats (0) and (Uc2) soils with peaty surfaces; and relatively unstable dunes of calcareous sands (Uc1.1) and/or siliceous sands (Uc1.2) bordering the coast. Compare unit A9. As mapped, low hills of undescribed soils projecting through the sand plain, e.g. Nelson's Bay area, and some coastal swampy areas are included.	245m	North East

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

Acid Sulfate Soils

Boomerang Drive, Blueys Beach, NSW 2428

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
4	Works more than 2 metres below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered more than 2 metres below natural ground surface, present an environmental risk	Great Lakes Local Environmental Plan 2014

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

Boomerang Drive, Blueys Beach, NSW 2428

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m	On-site
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	86m	East

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Boomerang Drive, Blueys Beach, NSW 2428

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

Boomerang Drive, Blueys Beach, NSW 2428

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

Boomerang Drive, Blueys Beach, NSW 2428

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

Boomerang Drive, Blueys Beach, NSW 2428

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0104	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
PEL0009	AUSTRALIAN OIL AND GAS CORPORATION LTD, UNION OIL DEVELOPMENT CORP., KERN COUNTY LAND CO.			PETROLEUM	Petroleum	0m	On-site
PEP0005	NSW OIL AND GAS CO NL, PLANET EXPLORATION COMPANY PTY LTD			PETROLEUM	Petroleum	209m	East
PEL0064	L H SMART OIL EXPLORATION CO. LTD			PETROLEUM	Petroleum	209m	East
EL0388	PLANET MINING COMPANY PTY LIMITED	01 Jan 1971	01 Jan 1975	MINERALS	Heavy mineral sands	743m	East

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

Boomerang Drive, Blueys Beach, NSW 2428

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones Boomerang Drive, Blueys Beach, NSW 2428

Environmental Planning Instrument

Boomerang Drive, Blueys Beach, NSW 2428

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
E2	Environmental Conservation		Great Lakes Local Environmental Plan 2014	18/12/2020	18/12/2020	18/12/2020	Amendment No 22	0m	On-site
B1	Neighbourhood Centre		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		0m	On-site
E4	Environmental Living		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		0m	On-site
R2	Low Density Residential		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		0m	On-site
RU2	Rural Landscape		Great Lakes Local Environmental Plan 2014	16/10/2020	16/10/2020	18/12/2020	Amendment No 21	0m	On-site
B1	Neighbourhood Centre		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		32m	North East
E3	Environmental Management		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		36m	East
R3	Medium Density Residential		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		264m	North
RE1	Public Recreation		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		322m	North East
E3	Environmental Management		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		617m	North East
RE1	Public Recreation		Great Lakes Local Environmental Plan 2014	04/04/2014	04/04/2014	18/12/2020		657m	North East
RE2	Private Recreation		Great Lakes Local Environmental Plan 2014	18/12/2020	18/12/2020	18/12/2020	Amendment No 22	674m	North West

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage

Boomerang Drive, Blueys Beach, NSW 2428

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
N/A	No records in buffer								

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

Boomerang Drive, Blueys Beach, NSW 2428

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Category 1	0m	On-site
Vegetation Category 2	0m	On-site
Vegetation Buffer	Om	On-site

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

Boomerang Drive, Blueys Beach, NSW 2428

Vegetation - Eastern Bushland Database (North Region)

What Vegetation exists within the dataset buffer?

Veg Code	Veg Desc	NVISCode	NVISDesc	Distance	Direction
2/3	moist forest / dry open forest	8	Moist forest system	0m	On-site
x	disturbed forest woodland	23	Disturbed bushland	17m	North East

Vegetation Eastern Bushland Database Data Source: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

Boomerang Drive, Blueys Beach, NSW 2428

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	Moderate potential GDE - from regional studies	Dissected basaltic plateaus.	Vegetation		0m	On-site
Terrestrial	Moderate potential GDE - from regional studies	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	High potential GDE - from regional studies	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	Low potential GDE - from regional studies	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	Low potential GDE - from regional studies	Dissected basaltic plateaus.	Vegetation		0m	On-site
Terrestrial	High potential GDE - from regional studies		Vegetation		754m	South

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

Boomerang Drive, Blueys Beach, NSW 2428

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	2	Dissected basaltic plateaus.	Vegetation		0m	On-site
Terrestrial	1	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	6	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	7	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	5	Dissected basaltic plateaus.	Vegetation		0m	On-site
Terrestrial	2	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	5	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		0m	On-site
Terrestrial	4	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		32m	North West
Terrestrial	3	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		200m	North
Terrestrial	8	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		330m	North
Terrestrial	10	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		391m	North West
Terrestrial		Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		433m	East
Terrestrial	2		Vegetation		754m	South

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

Boomerang Drive, Blueys Beach, NSW 2428

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Ardenna pacifica	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Esacus magnirostris	Beach Stone- curlew	Critically Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Gelochelidon nilotica	Gull-billed Tern	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
----------	----------	---	--	----------------------------	--------------------------	--------------------------------	---------------------------------
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Melanodryas cucullata cucullata	Hooded Robin (south-eastern form)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pachycephala pectoralis contempta	Golden Whistler (Lord Howe Is. subsp.)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pterodroma leucoptera leucoptera	Gould's Petrel	Vulnerable	Not Sensitive	Endangered	
Animalia	Aves	Ptilinopus magnificus	Wompoo Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius	Pomarine Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Balaenoptera musculus	Blue Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	lsoodon obesulus obesulus	Southern Brown Bandicoot (eastern)	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Macropus parma	Parma Wallaby	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Greater Glider	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus australis	Yellow-bellied Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascogale tapoatafa	Brush-tailed Phascogale	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys gracilicaudatus	Eastern Chestnut Mouse	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Syconycteris australis	Common Blossom-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Dermochelys coriacea	Leatherback Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Hoplocephalus stephensii	Stephens' Banded Snake	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Allocasuarina	Nabiac Casuarina	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Chamaesyce	Sand Spurge	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Cynanchum elegans	White-flowered Wax Plant	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Diuris praecox	Rough Doubletail	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Genoplesium littorale	Tuncurry Midge Orchid	Critically Endangered	Category 2	Critically Endangered	
Plantae	Flora	Lindernia alsinoides	Noah's False Chickweed	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Critically Endangered	
Plantae	Flora	Rhodomyrtus psidioides	Native Guava	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Senecio spathulatus	Coast Groundsel	Endangered	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Senna acclinis	Rainforest Cassia	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	

Data does not include NSW category 1 sensitive species. NSW BioNet: $\ensuremath{\mathbb{C}}$ State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (**Third Party Content**) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

2 Biripi Way | PO Box 482 Taree NSW 2430

PLANNING CERTIFICATE

Information provided pursuant to SCHEDULE 4 of the Environment Planning and Assessment Regulation 2000

APPLICANT:	C & L Solicitors 605/431, Sussex Street SYDNEY NSW 2000
Certificate No:	PC2021/5412
Certificate Date:	15/09/2021
Property:	Boomerang Drive BLUEYS BEACH NSW 2428
Title:	Lot 23 DP 537919
Land No:	625721
Applicant's Ref:	6346

IMPORTANT: Please read this certificate carefully.

The information provided in this certificate relates only to the land described above. If you need information about an adjoining property or nearby land, a separate certificate will be required.

All information provided is correct as at the date above. Please note, it is possible for changes to occur within a short time and we recommend you only rely upon a very recent certificate.

For more information on this Planning Certificate please contact our Customer Experience team on 02 7955 7777.

Adrian Panuccio GENERAL MANAGER

SECTION 10.7(2)

The following matters relate to the land, as required by section 10.7(2) of the Environmental Planning and Assessment Act (1979) ("the Act").

ITEM 1 - Names of relevant planning instruments and DCPs

1. The following environmental planning instruments apply to the carrying out of development on the land:

Local Environmental Planning Instrument

Great Lakes Local Environmental Plan 2014

State Environmental Planning Policies

Affordable Rental Housing 2009 Building Sustainability Index: BASIX 2004 Coastal Management 2018 Concurrences and Consents 2018 Educational Establishments and Child Care Facilities 2017 Exempt and Complying Development Codes 2008 Housing for Seniors or People with a Disability 2004 Infrastructure 2007 Koala Habitat Protection 2020 Koala Habitat Protection 2021 Mining, Petroleum Production and Extractive Industries 2007 No 21-Caravan Parks No 33—Hazardous and Offensive Development No 36—Manufactured Home Estates No 50—Canal Estate Development No 55—Remediation of Land No 64—Advertising and Signage No 65—Design Quality of Residential Apartment Development No 70—Affordable Housing (Revised Schemes) Primary Production and Rural Development 2019 State and Regional Development 2011 Vegetation in Non-Rural Areas 2017

Detailed information on the local environmental plans and State Environmental Planning Policies listed in this certificate is available at <u>NSW Legislation – In force legislation</u>

2. The following proposed environmental planning instruments apply to the carrying out of development on the land and are or have been the subject of community consultation or on public exhibition under the Environmental Planning and Assessment Act 1979:

The following proposed environmental planning instruments apply to the land:

No proposed State Environmental Planning instruments apply to the land.

No proposed Local Environmental Planning instruments apply to the land.

Detailed information on draft environmental planning instruments is available at the NSW Department of Planning, Industry and Environment <u>Current LEP Proposals</u> website; or MidCoast Council's Current Planning Proposals and DCP Amendments website.

Detailed information on draft State Environmental Planning Policies is available at the NSW Department of Planning, Industry and Environment <u>Draft Plans and Policies</u> and <u>State</u> <u>Environmental Planning Policies</u> review program websites.

3. The following development control plans apply to the carrying out of development on the land:

Great Lakes Development Control Plan 2014

ITEM 2 - Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP)

1. (a)-(d) Zoning details in the instruments identified in ITEM 1(1) above

Zone B1 Neighbourhood Centre

1 Objectives of zone

- To provide a range of small-scale retail, business and community uses that serve the needs of people who live or work in the surrounding neighbourhood.
- To enable a range of residential accommodation and tourist and visitor accommodation to be located above commercial uses to promote housing diversity and community activity within the business centre.
- To ensure that traffic generation from development can be managed in a way that avoids conflict with the desired pedestrian environment.

2 Permitted without consent

Home occupations

3 Permitted with consent

Boarding houses; Business premises; Centre-based child care facilities; Community facilities; Medical centres; Neighbourhood shops; Neighbourhood supermarkets; Oyster aquaculture; Respite day care centres; Roads; Seniors housing; Shop top housing; Tank-based aquaculture; Any other development not specified in item 2 or 4

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Exhibition villages; Extractive industries; Farm buildings; Farm stay accommodation; Forestry; Freight transport facilities; Heavy industrial storage establishments; Highway service centres; Industrial retail outlets; Industrial training facilities; Industries; Mooring pens; Moorings; Mortuaries; Open cut mining; Pond-based aquaculture Recreation facilities (major); Residential accommodation; Resource recovery facilities; Rural industries; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Warehouse or distribution centres; Waste disposal facilities; Wharf or boating facilities

Zone E2 Environmental Conservation

1 Objectives of zone

- To protect, manage and restore areas of high ecological, scientific, cultural or aesthetic values.
- To prevent development that could destroy, damage or otherwise have an adverse effect on those values.

2 Permitted without consent

Home occupations

3 Permitted with consent

Bed and breakfast accommodation; Building identification signs; Business identification signs; Car parks; Community facilities; Dwelling houses; Eco-tourist facilities; Emergency services facilities; Environmental facilities; Environmental protection works; Home-based child care; Home businesses; Information and education facilities; Oyster aquaculture Research stations; Roads; Sewerage systems; Water supply systems

4 Prohibited

Business premises; Hotel or motel accommodation; Industries; Multi dwelling housing; Pondbased aquaculture; Recreation facilities (major); Residential flat buildings; Restricted premises; Retail premises; Seniors housing; Service stations; Tank-based aquaculture; Warehouse or distribution centres; Any other development not specified in item 2 or 3

Zone E4 Environmental Living

1 Objectives of zone

- To provide for low-impact residential development in areas with special ecological, scientific or aesthetic values.
- To ensure that residential development does not have an adverse effect on those values.
- To provide for other types of low-impact development that complement and support residential development and do not have an adverse effect on the special ecological, scientific or aesthetic values of the land.

2 Permitted without consent

Home occupations

3 Permitted with consent

Animal boarding or training establishments; Backpackers' accommodation; Bed and breakfast accommodation; Boat launching ramps; Boat sheds; Building identification signs; Business identification signs; Camping grounds; Caravan parks; Centre-based child care facilities; Community facilities; Dual occupancies (attached); Dwelling houses; Eco-tourist facilities; Emergency services facilities; Environmental facilities; Environmental protection works; Extensive agriculture; Farm buildings; Farm stay accommodation; Flood mitigation works; Function centres; Helipads; Home-based child care; Home businesses; Information and education facilities; Kiosks; Landscaping material supplies; Neighbourhood shops; Oyster aquaculture; Pond-based aquaculture; Plant nurseries; Recreation areas; Research stations; Respite day care centres; Restaurants or cafes; Roads; Roadside stalls; Sewerage systems; Tank-based aquaculture; Water recreation structures; Water supply systems

4 Prohibited

Industries; Service stations; Warehouse or distribution centres; Any other development not specified in item 2 or 3

Zone R2 Low Density Residential

1 Objectives of zone

- To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.

2 Permitted without consent

Home occupations

3 Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Boat launching ramps; Building identification signs; Business identification signs; Camping grounds; Car parks; Caravan parks; Centre-based child care facilities; Community facilities; Dual occupancies; Dwelling houses; Educational establishments; Emergency services facilities; Environmental protection works; Exhibition homes; Flood mitigation works; Group homes; Health consulting rooms; Helipads; Home-based child care; Home businesses; Hostels; Hotel or motel accommodation; Information and education facilities; Jetties; Medical centres; Moorings; Multi dwelling housing; Neighbourhood shops; Oyster aquaculture; Places of public worship; Pondbased aquaculture; Recreation areas; Recreation facilities (indoor); Respite day care centres; Roads; Secondary dwellings; Seniors housing; Sewerage systems; Shop top housing; Tankbased aquaculture; Water recreation structures; Water supply systems; Wharf or boating facilities

4 Prohibited

Any development not specified in item 2 or 3

Zone RU2 Rural Landscape

1 Objectives of zone

- To encourage sustainable primary industry production by maintaining and enhancing the natural resource base.
- To maintain the rural landscape character of the land.
- To provide for a range of compatible land uses, including extensive agriculture.
- To provide for rural tourism in association with the primary industry capability of the land which is based on the rural attributes of the land.
- To secure a future for agriculture in the area by minimising the fragmentation of rural land and loss of potential agricultural productivity.

2 Permitted without consent

Extensive agriculture; Home occupations

3 Permitted with consent

Agriculture; Airports; Airstrips; Animal boarding or training establishments; Aquaculture; Backpackers' accommodation; Bed and breakfast accommodation; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cellar door premises; Cemeteries; Centre-based child care facilities; Charter and tourism boating facilities; Community facilities; Crematoria; Depots; Dual occupancies; Dwelling houses; Eco-tourist facilities; Educational establishments; Environmental facilities: Environmental protection works: Exhibition homes: Extractive industries; Farm buildings; Farm stay accommodation; Flood mitigation works; Forestry; Hazardous storage establishments; Helipads; Heliports; Home-based child care; Home businesses; Hotel or motel accommodation; Industrial training facilities; Industries; Information and education facilities; Jetties; Kiosks; Landscaping material supplies; Marinas; Mooring pens; Moorings; Neighbourhood shops; Offensive storage establishments; Open cut mining; Places of public worship; Plant nurseries; Public administration buildings; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Respite day care centres; Restaurants or cafes; Roads; Roadside stalls; Rural industries: Rural supplies: Secondary dwellings: Sewerage systems: Signage: Timber yards; Transport depots; Truck depots; Veterinary hospitals; Water recreation structures; Water supply systems; Wharf or boating facilities

4 Prohibited

Any development not specified in item 2 or 3

Detailed information on the land zone mapping is available at the NSW Department of Planning, Industry and Environment <u>ePlanning Spatial Viewer</u> website; or MidCoast Council's <u>Online Mapping</u> website.

Additional permitted uses

No Additional Permitted Use provisions apply to this land.

(e) Are there development standards applying to the land, which fix minimum land dimensions for the erection of a dwelling house on the land?

Yes, Clause 4.2A Erection of dwelling houses on land in certain rural and environment protection zones of the local environmental plan applies a development standard, which fixes a minimum land dimension for the erection of a dwelling.

(f) Does the land include or comprise critical habitat?

The land does not include or comprise critical habitat.

(g) Is the land within a conservation area?

Note: excluding conservation areas otherwise identified under Item 9A - biodiversity certified land; Item 10 – biodiversity stewardship site; Item 10A – Native vegetation clearing set asides; or Item 12 – Property vegetation plans.

No, the land is not identified as being within a conservation area.

(h) Is there an item of environmental heritage on the land?

No environmental planning instrument identifies an item of environmental heritage on the land.

2. (a)-(d) Zoning details in any draft instruments identified in ITEM 1(2) above

The following proposed environmental planning instruments apply to the land and propose a change to the land zone or land uses that are allowed on the land:

No proposed environmental planning instruments apply to the land.

Detailed information on draft environmental planning instruments is available at the NSW Department of Planning, Industry and Environment <u>Current LEP Proposals</u> website; or MidCoast Council's <u>Current Planning Proposals and DCP Amendments</u> website.

Detailed information on draft State Environmental Planning Policies is available at the NSW Department of Planning, Industry and Environment <u>Draft Plans and Policies</u> and <u>State</u> <u>Environmental Planning Policies</u> review program websites.

Additional permitted uses

No proposed environmental planning instruments apply to the land that propose an additional permitted use.

(e) Are there development standards applying to the land, which fix minimum land dimensions for the erection of a dwelling house on the land?

No proposed environmental planning instruments include a development standard to fix a minimum land dimension for the erection of a dwelling house on the land.

(f) Does the land include or comprise critical habitat?

No proposed environmental planning instruments include or comprise critical habitat on the land.

(g) Is the land within a draft conservation area (however described)?

Note: excluding conservation areas otherwise identified under Item 9A - biodiversity certified land; Item 10 – biodiversity stewardship site; Item 10A – Native vegetation clearing set asides; or Item 12 – Property vegetation plans.

No proposed environmental planning instrument identifies the land as being within a draft conservation area.

(h) Is there a draft item of environmental heritage situated on the land?

No proposed environmental planning instrument identifies a draft item of environmental heritage on the land.

ITEM 2A - Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

Is the land identified within any zone under Part 3 of State Environmental Planning Policy (Sydney Region Growth Centres) 2006, a Precinct Plan, or a Proposed Precinct Plan that is or has been the subject of community consultation or on public exhibition under the Act?

No, the Land is not located within a Sydney Regional Growth Centre.

ITEM 3 – Complying Development Exclusions

The extent to which complying development may be carried out on the land, under clauses 1.17A(1) (c) to (e), (2), (3) and (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008?

Complying development may or may not be carried out on the subject land under an Environmental Planning Policy.

Council does not have sufficient information to determine the extent to which specific complying development may or may not be carried out.

For further information on complying development, please refer to the NSW Government Planning Portal at <u>https://www.planningportal.nsw.gov.au/onlinecdc</u>

ITEM 4 – (Repealed)

ITEM 4A – (Repealed)

ITEM 4B – Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

Has the owner (or any previous owner) of the land consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act)?

No, the land is not subject to annual charges under the Local Government Act 1993 for coastal protections works.

Planning Certificate Property: Boomerang Drive BLUEYS BEACH NSW 2428

ITEM 5 – Mine subsidence

Is the land proclaimed to be in a mine subsidence district within the meaning of the Coal Mine Subsidence Compensation Act 2017?

No, the land is not in a mine subsidence district within the meaning of the Coal Mine Subsidence Compensation Act 2017.

ITEM 6 – Road widening and road realignment

Is the land affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993; or
- (b) Any environmental planning instrument; or
- (c) Any resolution of the Council?

No, the land is not identified as being affected by a proposed road widening or realignment under the provisions above.

ITEM 7 – Council and other public authority policies on hazard risk restrictions

(a) Whether or not the land is affected by a policy adopted by the Council that restricts the development of the land because of the likelihood of:-

(i) land slip	No
(ii) bushfire	No
(iii) tidal inundation	No
(iv) subsidence	No
(v) acid sulphate soils	No
(vi) land contamination	No
(vii) Other Risk	No

(b) Whether or not the land is affected by a policy adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the Council that restricts the development of the land because of the likelihood of:-

(i) land slip	No
(ii) bushfire	Yes
(iii) tidal inundation	No
(iv) subsidence	No
(v) acid sulphate soils	No
(vi) land contamination	No
(vii) Other Risk	No

ITEM 7A – Flood related development controls information

1. Whether or not development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No, the land is not affected by flood related development controls.

2. Whether or not development on the land or part of the land for any other purpose is subject to flood related development controls.

No, the land is not subject to flood related development controls associated with an identified Probable Maximum Flood (PMF) within an adopted Council policy or environmental planning instrument.

Details relating to flood risk and flood planning levels may be provided on a Flood Level Certificate. The application form is available at <u>https://www.midcoast.nsw.gov.au/Council/Forms-Library/Certificates</u> on Council's website.

ITEM 8 – Land reserved for acquisition

Is there an environmental planning instrument, or proposed environmental planning instrument referred to in clause 1 which makes provision in relation to the acquisition of the land by a public authority, as referred to in section 3.15 of the Environmental Planning and Assessment Act 1979?

No, the land is not identified in the Land Acquisition Layer of the local environmental plan or a draft environmental planning instrument.

ITEM 9 – Contributions plans

The name of each contributions plan applying to the land is:-

Great Lakes - Forster District Contributions Plan 2015 Great Lakes Wide Contributions Plan 2015

ITEM 9A - Biodiversity certified land

Is the land biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016 (including land certified under Part 7AA of the Threatened Species Conservation Act 1995)?

Note. Biodiversity certified land includes land certified under Part 7AA of the Threatened Species Conservation Act 1995 that is taken to be certified under Part 8 of the Biodiversity Conservation Act 2016.

No, the land is not identified as biodiversity certified land.

ITEM 10 – Biodiversity stewardship sites

Has Council been notified by the Chief Executive of the Office of Environment and Heritage that the land is a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016 (including biobanking agreements under Part 7A of the Threatened Species Conservation Act 1995)?

Note. Biodiversity stewardship agreements include biobanking agreements under Part 7A of the Threatened Species Conservation Act 1995 that are taken to be biodiversity stewardship agreements under Part 5 of the Biodiversity Conservation Act 2016.

No, Council has not been notified that the land is a biodiversity stewardship site.

ITEM 10A – Native vegetation clearing set asides

Under section 60ZC of the Local Land Service Act 2013, has Council been notified by Local Land Services (or is it registered in the public register under that section) that the land contains a set aside area?

No, Council has not been notified that the land contains a native vegetation clearing set asides site.

ITEM 11 – Bush fire prone land

Yes, the land is identified in whole or part as bushfire prone.

ITEM 12 – Property vegetation plans

Has Council been notified (by the person or body that approved the plan) of the existence of a property vegetation plan approved under Part 4 of the Native Vegetation Act 2003 (and that continues in force) applying to the land?

No, Council has not been advised that an approved Property Vegetation Plan applies to this land and continues in force under Part 4 of the Native Vegetation Act 2003.

ITEM 13 – Orders under Trees (Disputes Between Neighbours) Act 2006

Has Council been notified that an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land?

No, Council has not been notified of an order under the Trees (Disputes Between Neighbours) Act 2006 that affects the subject land.

ITEM 14 – Directions under Part 3A

Is there a direction by the Minister in force under section 75P (2) (c1) of the Environmental Planning and Assessment Act 1979 that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect?

No, there is no direction by the Minister in force under section 75P (2) (c1) of the Environmental Planning and Assessment Act 1979, that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, applying to the land.

ITEM 15 – Site compatibility certificates and conditions for seniors housing

(a) Has a current site compatibility certificate (seniors housing), of which the Council is aware, been issued under State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land?

No, Council is not aware of a current site compatibility certificate (seniors housing) issued under State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land.

(b) Have any terms of a kind referred to in clause 18(2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land?

No, Council is not aware of a condition of consent being imposed in terms of a kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of development on the land.

ITEM 16 – Site compatibility certificates for infrastructure, schools or TAFE establishments

Has a valid site compatibility certificate (infrastructure) or a site compatibility certificate (schools or TAFE establishments), of which the Council is aware, been issued?

No, Council is not aware of a site compatibility verification certificate for infrastructure, schools or TAFE establishments on the land.

ITEM 17 – Site compatibility certificates and conditions for affordable rental housing

1. Has a current site compatibility certificate (affordable rental housing), of which the Council is aware, been issued in respect of proposed development on the land?

No, Council is not aware of a site compatibility verification certificate for affordable rental housing on the land.

2. Have any terms of a kind referred to in clause 17(1) or 38(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 been imposed as a condition of consent to a development application in respect of the land?

No, Council is not aware of a condition of consent being imposed in terms of a kind referred to in clause 17(1) or 38(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 in respect of development on the land.

ITEM 18 – Paper subdivision information

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

A development plan has not been adopted that applies to the land.

(2) The date of any subdivision order that applies to the land.

A subdivision order does not apply to the land.

ITEM 19 – Site verification certificates

Has Council been made aware of a current site verification certificate that has been issued in respect of the land?

No, Council is not aware of a current site verification certificate that applies to the land.

ITEM 20 – Loose – fill asbestos insulation

Has Council been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register that is required to be maintained under that Division?

No, Council has not been notified that the land is identified on the register of residential premises under Division 1A of Part 8 of the Home Building Act 1989.

ITEM 21 – Affected building notices and building product rectification orders

1. Is any affected building notice in force in respect of the land?

No, Council is not aware of any notice of intention to make a building product rectification order on the land which is outstanding.

2. Is any building product rectification order in force in respect of the land that has not been fully complied with?

No, Council is not aware of any building product rectification order is in force on the land that has not been fully complied with.

3. Has a notice of intention to make a building product rectification order been given in respect of that land that is outstanding?

No, Council is not aware of any notice of intention to make a building product rectification order on the land which is outstanding.

NOTE 1 – Matters arising under the Contaminated Land Management Act 1997

Section 59(2) of the Contaminated Land Management Act 1997 prescribes the following additional matters to be specified in planning certificates:-

(a) At the date of this certificate, is the land (or part of the land) to which this certificate relates significantly contaminated land?

No, the land is not declared to be significantly contaminated land under Part 3 of the Contaminated Land Management Act 1997 at the date of issue of the certificate.

(b) At the date of this certificate, is the land to which this certificate relates subject to a management order?

No, the land is not subject to a management order within the meaning of the Contaminated Land Management Act 1997 at the date of issue of the certificate.

(c) At the date of this certificate, is the land to which this certificate relates the subject of an approved voluntary management proposal?

No, the land is not subject to an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997 at the date of issue of the certificate.

(d) At the date of this certificate, is the land to which this certificate relates subject to an ongoing maintenance order?

No, the land is not subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997 at the date of issue of the certificate.

(e) At the date of this certificate, is the land to which this certificate relates the subject of a site audit statement and a copy of such a statement has been provided to the Council?

No, Council has not been provided with a site audit statement that applies to the land within the meaning of the Contaminated Land Management Act 1997 at the date of issue of the certificate.

Planning Certificate Property: Boomerang Drive BLUEYS BEACH NSW 2428

GENERAL INFORMATION

The absence of any reference to a matter affecting the land shall not imply that the land is not affected by that matter not referred to in this certificate.

Information provided under section 10.7(2) is in accordance with the matters prescribed under schedule 4 of the Environmental Planning and Assessment Regulation 2000 and is provided only to the extent that the Council has been notified by the Department of Planning.

Any enquiries regarding State and Regional Environmental Planning Policies should be directed to the Department of Planning at http://www.planning.nsw.gov.au

Please contact Council's Customer Service team for further information about this Planning Certificate.

Adrian Panuccio GENERAL MANAGER This information is provided by MidCoast Council DocuSign Envelope ID: 1D9ABC6E-2699-4C56-89C0-B3505D4FF2BB

Sewer Drainage Diagram 55887

Lot 23 Section

Plan **DP537919**

Address Boomerang Dr BLUEYS BEACH NSW 2428

Legend

Rising Main Document Set ID: 15383113 Version: 1, Version Date: 03/09/2021 Sewer Junction existing at metres from D.S.M.H. Depth of Junction approx. m Depth of Riser approx. m Print Date: 16 September 2021, 11:27 AM

1:5,820

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Search Report

Address: - Boomerang Drive, Blueys Beach

Description: - Lot 23 D.P. 537919.

As regards the part numbered (1) on the attached Cadastral Records Enquiry Report.

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.01.1934 (1934 to 1954)	Samuel Thomas Newman (Farmer)	Crown Tenure Crown Lease 1934/1 Taree Now Crown Tenure Conditional Purchase 1946/10 Taree
16.09.1954 (1954 to 1969)	Ray Allen Williams (Farmer) Now Raymond Allen Williams	Crown Tenure Conditional Purchase 1946/10 Taree (Book 2311 No. 46) Then Vol 8222 Fol 133 Now Vol 11161 Fol 69

As regards the part numbered (2) on the attached Cadastral Records Enquiry Report.

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
21.05.1919	John James Newman	Crown Tenure Conditional
(1919 to 1941?)	(Died? 1929)	Lease 1919/17 Taree
1929 (1929 to 1954)	Bertha Rose Newman (Spinster)	Crown Tenure Conditional Lease 1919/17 Taree Then Crown Tenure Conditional Purchase 1941/7 Taree Vol 5791 Fol 190 Vol 5980 Fol 108 Now Vol 6120 Fol 225
02.09.1954 (1954 to 1969)	Ray Allen Williams (Farmer) Now Raymond Allen Williams	Vol 6120 Fol 225 Then Vol 9270 Fol 209 Now Vol 11161 Fol 69

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304)

Continued as regards the whole of the subject land.

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
29.12.1969 (1969 to date)	# Wilmar Enterprises Pty Limited	Vol 11161 Fol 69 Now 23/537919

Denotes current registered proprietor

Leases and Easements: - NIL

Yours Sincerely, Mark Groll 20 January 2022

Report Generated 7:48:12 AM, 20 January, 2022 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

InfoTrack

ч ч /Seg: 47 /Prt:20-Jan-2022 07: - Boomerang Drive, LRS /Pgs:ALL / f:LS028382 EP P /Rev:02-Sep-1992 /NSW neral /Src:INFOTRACK /Re /Doc:DP 0537919 the Registrar-Ge Req:R191912 © Office of Req:R192345 /Doc:CP 05576-1497 P /Rev:24-Nov-2012 /NSW LRS /Prt:20-Jan-2022 09:12 /Seq:1 of 1 © Office of the Registrar-General /Src:INFOTRACK /Ref:LS028382_EP - Boomerang Drive,

A-293 Papers L. B. 34.177 PORTION 256 PLAN OF Parish of Foster County of Gloucester LAND BOARD DISTRICT OF MAITLAND LAND DISTRICT OF TAREE STROUD SHIRE Applied for under the 130 " Section of the Grown Lands Consolidation Act 1913 by Samuel Thomas Newman. {Por 256. C? L. 34 I of 30" January now & P.46-10 of 21 st March (Conve). Now Ray Allen Williams. Sale completed Ten. 61. 1976. Within . the Glouvester Gold-Field Proclaimed on 31d²¹June 1879. Open to C.P. 87 62251 190 64 G. H. Wheeler Pt C? L. 30.29 I Newman C.L. 19.17 339 NO ADDITIONS OR AMENDMENTS TO BE 180a. 338 3.ex.rd. 168 GA3AIR 256ACIFIC G. H. Wheeler. Pt. C. L. 30-29 OUTH Reg fet BES BOAD JUD WIDE Azimuth taken from XY. 720 a.cx.rd Field Book 1.D. 195. Pages 16 & 17. I David Stirling Sharpe **Reference to Corners** • I • I • 1 • 1 • 1 • Taree Corner From Tinks Nº on Free of Bearing **Reference to Traverse** 12 17 A Gum 27.4 256 Lin 2/5 363.7 06 В Numbered Stake 190.256 (Nen 2 177 21 685.2 3 4 156° 48 519.7 160 39 695·5 С Numbered Stake 256 rs Act. 1929 194" 5 28 478.8 6 179° 15 1397.1 ubscribed and declared befo D 78 50 Gum 29.7 256 188° 7 14 8.90.8 188° 8 17 1200.0 9 176 02 550.0 the Peace 1934NO 65 Transmitted to the District Surve Checked and Charted Creel A. Improvements Nil Cal. Book Nº DGI Folio 72 Officer in chan Plan approved . enta Scale 20 Chains to an Inch inster 11/4/25 Litho StKilmin Cat Nº 65576. 1497.

Req:R193191 /Doc:CP 04953-1497 P /Rev:24-Nov-2012 /NSW LRS /Prt:20-Jan-2022 10:21 /Seq:1 of 1 © Office of the Registrar-General /Src:INFOTRACK /Ref:LS028382_EP - Boomerang Drive,

RAY ALLEN WILLIAMS of Charlotte Bay, Farmer.

gistrar General.

SECOND SCHEDULE (Continued overleaf)

- 1. Reservations and conditions, if any, contained in the Crown Grant referred to in the said Deposited Plan.
- 2. Restrictions on transfer See Section 272 Crown Lands Consolidation Act 1913.

strar Ceneral

70919	1 62	ST 1600	V. C	N	SUSNT,	GOVERNMENT PRINTER	
-------	------	---------	------	---	--------	--------------------	--

	FIRST SCHEDULE (continu	ed)		70919 1 62		NT. GOVERNMENT PRINTER	1
······································	REGISTERED PROPRIETOR	NATURE	INSTRUMENT	I DATE	ENTERED	Signature of Registrar-General	
the name of the proprietor is Ray.		Clange of nor	ne 2118442		26 . 7 . 1965	Januaran	4. Č:
This deed is concelled as to $\frac{1}{4}$	i whele		·				1
New Certificates of Fitte Some	11 Jud - ma 16 - 10 - 1969			· · ·			DP_T
for ions in <u>dependention</u> in the	537919 as fallours			1			
Lots 23 4 24 Vol 11161 =	als 697 10 randominin.						
194	Nataon ()						
	Control Control		t	1			717
							1
	SECOND SCHEDULE (continu	ied·)					
	PARTICULARS						
WORDER DATE		ENTERED	Signature of Registrar-General		CANCELLATION		
	te De national Bank of Australacia Inited	ENTERED	Signature of Registrar-General		CANCELLATION		
			·····		CANCELLATION		
			·····				
			·····	· · · · · · · · · · · · · · · · · · ·			
			·····		CANCELLATION		
			·····		CANCELLATION		
			·····		CANCELLATION		
			·····		CANCELLATION		
			·····		CANCELLATION		
			·····		CANCELLATION		
			·····		CANCELLATION		

	INSTRUMENT					Signature of	
NATURE	NUMBEA	DATE	<u> </u>	PARTICULARS	ENTERED	Signature of Registrar-General	CANCELLATION
Mortgage.	L118442	8-7-1965	te se national	Bank of Australacia Smited	Lb 7 1965	Jennihan	
							l l
	·	ţ					
	•						
·· .	• • • • • • •				1		
•			[· · ·		
· .							
					· · · · · ·	• • • • • •	
			· · · · · · · · ·	$\Phi_{\rm eff}(t) = 0$, where $\theta_{\rm eff}(t)$ is a second state of the second state of th	e e e e e e e e e e e e e e e e e e e		
		т. н. с.	n an		en an a		
• • • • • • • • • • • • • • • • • • • •		e en en el el	and the second second	an a	and the second second		

/Doc:CT 11161-069 CT /Rev:04-Feb-2011 /NSW LRS /Pgs:ALL the Registrar-General /Src:INFOTRACK /Ref:LS028382_EP -/Prt:20-Jan-2022 Boomerang Drive, -Jan-2022 07:47 Office of I EIGER FICATE OPERTY ACT OF TITLE NEW SOUTH WALES 190 1900, as amended. ACT. Crown Grants Volume 5791 Folio 19 69 11161 Fol. Vol. Volume 8222 Folio 133 Volume 8222 Folio 133 Prior Titles Volume 9270 Folio 209 6 CANCELLEN 9 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. Fol SEE AUTO FOLID L. bolliver Witness Registrar General. WARNING: THIS DOCUMENT MUST NOT BE PLAN SHOWING LOCATION OF LAND (Page 1) Vol. RAVERSE. 30 12 2 PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON 60.4 14 (D SAIDAI) 1 19 35348 NO S 66 81 110 23 23 86 ac. Ir. 16 p. 24 **REMOVED FROM** 28 40.3r (by 1040) 168 H 557 168 LAND TITLES OFFICE 5 51. 2. 5 DUCRU R.6663 DIAGRAM. ESTATE AND LAND REFERRED TO in Deposited Plan 537919 at Bluey's Beach in the Shire of Stroud 23 Estate in Fee Simple in Lot Parish of Forster and County of Gloucester EXCEPTING THEREOUT the minerals reserved by the Crown Grant. FIRST SCHEDULE GRM SECOND SCHEDULE 1. Reservations and conditions, if any, contained in the Crown Grants above referred to. Restrictions on transfer - see Section 272 Crown Lands Consolidation Act, <u>1913</u> AA C.P.s 1941/7 and 1946/10 Taree as regards parts). 10711184/ COMOT: -85 to tho par the_land_abo Trimited alasia T1+10 Volume 169.6 649 Q. 968 part formerly Mortgage No. -comprised 1118443 the 4. 69664919 1968 Limited The Nation Bank alson Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

			FIRST SCHEDULE (contin	ued)					691664
			REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER	- I DATE	ENTERED	Signature of Registrar General	L696549
ilmar E	lerprises.	Pty Limit	id	<u> </u>	<u>L 696650</u>	19-12-1969	2-2-1970	Southtion	173
				** * ****				nen näjätyötötti – viäyskolistasi autohyymyyyyssavaita	
· · · · · · · · · · · · · · · · · · ·								•	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	4
-								· · · · · · · · · · · · · · · · · · ·	
1. 		rit hit is as no van krant der trackerten bester							
· · ·		18-9 <u>8, 1997</u> - 7- 98-98-19-19-19-19-19-19-1			1994, a sub e a constant				
				I			·	· · · · · · · · · · · · · · · · · · ·	L -
			SECOND SCHEDULE (cont		Ciacona et al.				
NATURE		I DATE	PARTICULARS	ENTERED	Signature of Registrar General		CANCELLATION	1	
Montgage	6738194	5.2.1970	to Bank of New South Wales	18.2.1970	Joulatarre				
				······			·	,	
		· · · · · · · · · · · · · · · · · · ·			-		· · ·		-
		· · · · · · · · · · · · · · · · · · ·		·				·	
nan an									
and graphing a grap of the second second			CANCELLED		-				-
									-
مه مدده المؤدرة والمراجع مستعمل الم								anna da da anticipation da anticipation de la constante de la constante de la constante de la constante de la c	
	•		SEE AUTO FOLIO						-
		· · · · · · · · · · · · · · · · · · ·							
		a min, / # Linne it	·						-
									-
		1							-1
	+								2

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 20/1/2022 7:48AM

FOLIO: 23/537919 _____

> First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11161 FOL 69

LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
8/7/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
16/9/1993 16/9/1993		DISCHARGE OF MORTGAGE MORTGAGE	EDITION 1
12/5/1998	3979230	DEPARTMENTAL DEALING	
15/7/1999	DP1003887	DEPOSITED PLAN	
16/8/2001	7859256	DISCHARGE OF MORTGAGE	EDITION 2
9/4/2015	AJ366405	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 3

*** END OF SEARCH ***

LS028382_EP - Boomerang Drive,

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 23/537919

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
20/1/2022	7:48 AM	3	9/4/2015

LAND

_ _ _ _

LOT 23 IN DEPOSITED PLAN 537919 AT BLUEY'S BEACH LOCAL GOVERNMENT AREA MID-COAST PARISH OF FORSTER COUNTY OF GLOUCESTER TITLE DIAGRAM DP537919

FIRST SCHEDULE _____

WILMAR ENTERPRISES PTY LIMITED

(T L696650)

SECOND SCHEDULE (4 NOTIFICATIONS)

- LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND 1 CONDITIONS IN FAVOUR OF THE CROWN - SEE CROWN GRANT(S)
- 2 DP1003887 EASEMENT TO DRAIN WATER 6 METRES WIDE APPURTENANT TO THE LAND ABOVE DESCRIBED
- 3 DP1003887 RIGHT OF CARRIAGEWAY 6 METRES WIDE APPURTENANT TO THE LAND ABOVE DESCRIBED
- AJ366405 THIS EDITION ISSUED PURSUANT TO S.111 REAL PROPERTY 4 ACT, 1900

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

LS028382_EP - Boomerang Drive,

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

APPENDIX

ENGINEERING LOGS

	ent: ject:	E	Bluey	enbrooke Pty L /s Beach Subdi	td vision							He	ole No: TP0
	atior	n: E	Bluey	/s Beach						Job No: 50522033			Sheet: 1
				site plan						Angle from Horizontal: 90°			e Elevation:
				.5 tonne Excava Isions:	ator					Excavation Method: 800mm T			ctor: Cardno
				24/1/22						Logged By: KS			ed By: GA
	cavat			Sampling & 1	estina					Material Descript			·····
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	· ·	Graphic Log	Classification		SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, chair & the second second second second second second	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
Z	Res	S	>		1 3 6 12	, 	ىلىر يىلىر .			fabric & texture, strength, weathering, defects and structure Silty CLAY: low plasticity, dark brown, with fine I		S. C.	TOPSOIL
				ES 0.10 - 0.20 m ES1				CL CL	0.10m	coarse grained sand, trace fine to medium (sub-angular gravel Silty CLAY: low plasticity, dark brown, with fine coarse grained sand, trace fine to medium		St	0.00 m: Organically impacted to 0. m from surface. COLLUVIUM
									0.30m	sub-angular gravel CLAY: high plasticity, grey mottled yellow and re with silt	ed,		RESIDUAL SOIL
						5		СН			M (■PL)	St	
									0.85m				_
										Silty CLAY: high plasticity, grey mottled red, trac fine to coarse grained sand	ce		
	E		Intered										
EX		Stable	Groundwater Not Encountered			5		СН			M (=PL)	St to VSt	
		Ó	Groundwa					GIT					
					 - -2.0								
		-							2.20m	Silty CLAY: medium plasticity, pale grey mottled orange and red, with fine sub-angular ironstone			EXTREMELY WEATHERED
										gravel, trace fine to coarse grained sand			
	F							CI			M (≈ PL)	н	
¥							<u>eve</u>		3.00m	TERMINATED AT 3.00 m Target depth			
ME EX R HA PT SC	Ri Ha Pu	cavato pper and aug ush tube pnic drill	er e		ETRATION Very Easy (No Resi Easy Firm Hard Very Hard (Refusal)	S H D	IP - ICP -	Standard Penetration Test B - Hand/Pocket Penetrometer D - ES -	Bulk disturbe	imple tal sample	S - Soft F - Firm
AH PS AS AD AD HF	I Ai Pe Sh /V So /T So A Ho	r hamm ercussion ort spir olid fligh olid fligh	er n sam al aug t auge t auge	er WAT			te	N P IN P	NC - PBT - NP - ND -	Moisture Content MOIST Plate Bearing Test D Borehole Impression Test M Photoionisation Detector W Vane Shear: P=Peak PL	URE Dry Moist Wet Plastic limit Liguid limit		VSL - Very Suit H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dei D - Dense
Pro	ent: ject:	E	Bluey	enbrooke Pty L /s Beach Subd	ta vision						H	ole No: TP0	
---	--	------------------------	--	--	--------------------------------	--------------------------------------	----------------	-----------------------	---	---	------------------------------------	---	
	ation	: 1	Bluey	/s Beach					Job No: 50522033			Sheet: 1	
				site plan	-4				Angle from Horizontal: 90°			e Elevation:	
				.5 tonne Excav	ator				Excavation Method: 800mm Toot			ctor: Cardno	
				4/1/22					Logged By: KS			ed By: GA	
	cavat			Sampling &	Testina				Material Description				
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mr	pt	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations	
	Ř			ES 0.00 - 0.10 m	1361	2	ند علد علد		defects and structure Sandy CLAY: low plasticity, dark brown-black, fine		0	TOPSOIL	
T				ES3				CL	0.10m to coarse grained sand, with fine to coarse, sub-angular to angular gravel, trace cobbles	_		0.00 m: Organically impacted to 0 m from surface. COLLUVIUM	
	E							CL	Sandy CLAY: low plasticity, dark brown-black, fine to coarse grained sand, with fine to coarse, sub-angular to angular gravel, trace cobbles	M (<pl)< td=""><td>St</td><td></td></pl)<>	St		
			ountered	B 0.60 - 0.80 m				СН	0.55m CLAY: high plasticity, grey mottled yellow, with fine to coarse, angular gravel, with silt	M (=PL)	St	RESIDUAL SOIL	
— EX —		Stable	Groundwater Not Encountered		-	- - - 1.0			0.90m SILTSTONE, grey mottled yellow, highly weathered			WEATHERED ROCK	
	F		Groun			 - - - -							
	н					-1.5							
V	VH								As above; decrease in fracturing/defects 1.90m TERMINATED AT 1.90 m				
						- 2.0 - - -			Refusal / Slow Progress on Weathered Rock				
ME R HA PT SA PS AD HF WE	Rij A Ha ON So I Air S Pe S Sh O/V So O/T So FA Ho	lid fligh llow flig	jer e er on sam al aug t auge t auge	et VE F H VH VH er STC-Bit er		(No Resista (Refusal) Level on		S F F M F	P - Hand/Pocket Penetrometer D - Dis CP Dynamic Cone Penetrometer ES - Em SP - Perth Sand Penetrometer U - Thi GE - Moisture Content MOISTURE BT - Plate Bearing Test D - Dry IP - Borehole Impression Test M - Moisture We ID - Photoionisation Detector W - We S - Vane Shear; P=Peak, LL - Lig	/ ist	mple al sample e 'undistu	e S - Soft F - Firm	

Clie Pro	ent: ject:	E	Blueys	brooke Pty Beach Subo	Ltd division						H	ole No: TP0
	ation	: E	Blueys	s Beach					Job No: 50522033			Sheet: 1
				ite plan					Angle from Horizontal: 90°			e Elevation:
			imens	tonne Exca	ator				Excavation Method: 800mm T			ctor: Cardno
			ed: 24						Logged By: KS			ed By: GA
	cavat			Sampling &	Testina				Material Descript			·····
				1 3 **	DCP	Ê		Ę				
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•							لت عليا عليا عليا عليا ع لت عليا عليا	SM	Silty SAND: fine to coarse grained, grey, with fine 10.10m angular gravel	ne D	St	TOPSOIL 0.00 m: Organically impacted to 0. m from surface.
							ورب او ()، د		Sandy GRAVEL: fine to coarse, sub-angular to angular, grey, fine to coarse grained sand			COLLUVIUM
	E-F					ſ						
			ered			F		GP		D	MD	
			count			F	0.0					
	<u> </u>		Groundwater Not Encountered		日間	- 0.5	0.0	<u> </u>	0.50m SANDSTONE, fine to medium grained, grey			WEATHERED ROCK
Ä		Stable	ater N			\mathbf{F}			mottled yellow, highly weathered			
		0	wpun			ŀ						
	н		0 C			Ļ						
						- 1.0			1.00m			
						- 1.0		<u> </u>	As above; decrease in fracturing/defects			
	VH					†			1.20m			
1						1			TERMINATED AT 1.20 m			
						F			Refusal / Slow Progress on Weathered Rock			
						ŀ						
						- 1.5						
						ŀ						
						Ļ						
						1						
						Γ.						
						- 2.0						
						F						
						ŀ						
						ŀ						
						-						
						-2.5						
						[
						†						
						ŀ						
						ŀ						
						- 3.0						
						+						
						ŀ						
						Ļ						
						L						
						1						
	THOD				NETRATION	•			ELD TESTS SAMPL			
EX R	Rij	oper	r bucket	E	Very Easy (N Easy	lo Resista	nce)		PT - Standard Penetration Test B - P - Hand/Pocket Penetrometer D -	Disturbed sa	mple	S - Soft
HA PT	Pu	nd aug sh tube	9	F	Firm Hard				CP Dynamic Cone Penetrometer ES -	Environment Thin wall tub	ai sample e 'undistu	irbed' St - Stiff
SO AH	Air	nic dril hamm	er	VH	Very Hard (F	tefusal)		N	C - Moisture Content MOIST	URE		VSt - Very Stiff H - Hard
PS AS	Sh	ort spir	n sampl al auger		Viter Water L	evel on	Date			Dry Moist		
AD AD	/T So	lid fligh	t auger: t auger:	TC-Bit	✓ shown ✓ water in			P	D - Photoionisation Detector	Wet Plastic limit		VL - Very Loose L - Loose
HF WE	3 Wa	ashbor	pht auge e drilling		water of water of					Liquid limit Moisture cor	ntent	MD - Medium Del D - Dense VD - Very Dense
RR	: Ro	ck rolle	at.	I				1				

Pro	ent: ject:	E	Blueys	brooke Pty L Beach Subdi	td vision							H	ole No: TP0
	atior	1: E	Blueys	s Beach						Job No: 50522033			Sheet: 1
				site plan						Angle from Horizontal: 90°			e Elevation:
				tonne Excav	ator					Excavation Method: 800mm T	ooth Buc		
			imens							Lawred Dry KO			actor: Cardno
			ed: 24		:					Logged By: KS		Спеск	ed By: GA
E>	kcavat	ion		Sampling & T	esting					Material Descript	on		
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	لير علير علير علير علير ع يملير علير ع علير علير علير ب	ѕм		Silty SAND: fine to coarse grained, grey, with fir angular gravel	D	St	TOPSOIL 0.00 m: Organically impacted to 0 m from surface.
			Ð			-		сі	0.20m	Gravelly CLAY: medium plasticity, yellow mottle grey, fine to coarse, sub-angular to angular grav with fine to coarse grained sand	d vel, M (<pl< td=""><td>) St</td><td>COLLUVIUM</td></pl<>) St	COLLUVIUM
EX	E-F	Stable	Groundwater Not Encountered			0.5 - -			0.45m	Clayey GRAVEL: fine to coarse, angular, grey mottled yellow, with cobbles, trace fine to coarse grained sand	•		EXTREMELY WEATHERED
			Groun			- 		GC			M (<pl< td=""><td>) L</td><td></td></pl<>) L	
	н	-				-	¢Ø 4		1.30m	SANDSTONE, fine to medium grained, blue gre mottled yellow	y		WEATHERED ROCK
						- - - - - - - - - - - - - - - - - - -							
ME EX R HA PS AD AD HF R R	Ri Ha DN Sci DN Sci S St D/V Sci D/T Sci A Ho B W	oper ind aug sh tube nic drill hamm rcussic ort spir lid fligh lid fligh llow flig	e er on sampl ral auger t auger: t auger: t auger ght auge e drilling	ler WA1 · V-Bit TC-Bit F	ETRATION Very Easy (Ne Easy Firm Hard Very Hard (Re TER Water Lo shown water inf d water out	efusal) evel on low		S H D P M P I P	IP - DCP - PSP - MC - PBT - MP - PID -	Standard Penetration Test B - Hand/Pocket Penetrometer D - Dynamic Cone Penetrometer U - Perth Sand Penetrometer U - Moisture Content MOIST Plate Bearing Test D Borehole Impression Test M - Photoionisation Detector W -	Bulk disturk Disturbed s Environmer Thin wall tu	ample ntal sample be 'undistu	e S - Soft F - Firm

	ject:		Bluey	enbrooke Pty Lt /s Beach Subdiv	d vision					H	ole No: TP0
	ation			/s Beach				Job No: 50522033			Sheet: 1
				site plan .5 tonne Excava	tor			Angle from Horizontal: 90° Excavation Method: 800mm Toot			e Elevation:
				sions:				Excavation Method. 600mm 100th			ctor: Cardno
				24/1/22				Logged By: KS			ed By: GA
Ex	cavat	ion		Sampling & T	esting			Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
1						ـــلد ــلد ــلد ــلد ــ ـبلد ــلد	щ. е.	Sandy Silty CLAY: low plasticity, dark 0.10m brown-black, fine to coarse grained sand			TOPSOIL 0.00 m: Organically impacted to 0. m from surface.
							CL	Sandy Silty CLAY: low plasticity, dark brown-black, fine to coarse grained sand 0.30m	M (₩PL)	St	COLLUVIUM
	E-F			B 0.80 - 1.00 m 2 x B			다. 다.다.	Sitty CLAY: medium to high plasticity, grey mottled white and orange, with fine to medium, angular gravel, trace fine to coarse grained sand	M (>PL)	St	RESIDUAL SOIL
EX		Stable	Groundwater Not Encountered					1.80m Silty CLAY: medium plasticity, pale grey mottled orange and red, with fine to coarse, angular gravel, trace fine to coarse grained sand		VSt	
	F						С		M (>PL)	н	
¥								3.00m TERMINATED AT 3.00 m Target depth			
ME R HA PT SO AD AD HF WE	Rij Ha Pu N Sc Ail Pe Sh V Sc /T Sc A Ho	oper nd aug sh tub nic dri hamn rcussi ort spi lid fligl lid fligl lid fligl	e ling ler on sam ral aug nt auge	et VE F H VH er r: V-Bit r: TC-Bit	ER Water Level of water outflow water outflow		S F F F	IP - Hand/Pocket Penetrometer D - Dist ICP - Dynamic Cone Penetrometer U - Thir ISP - Perth Sand Penetrometer U - Thir IC - Moisture Content MOISTURE D - Dist ISP - Plate Bearing Test D - Dry M Moisture ID - Photoionisation Detector W - Wei Place - Place ID - Photoionisation Detector V - Place - Place ID - Notoionisation Detector V - Place - Place		mple al sample e 'undistu	S - Soft F - Firm

Clie Proj	nt: ect:	E	Bluey	nbrooke Pty L s Beach Subdi	d vision					H	ole No: TP0
Loca	ation	: E	Bluey	/s Beach				Job No: 50522033			Sheet: 1
				site plan				Angle from Horizontal: 90°			e Elevation:
				5 tonne Excava sions:	llor			Excavation Method: 800mm Toot			actor: Cardno
		-	-	4/1/22				Logged By: KS			ed By: GA
	cavat			Sampling & T	estina			Material Description		2.10010	
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Graphic	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•	ш. 				1 3 6 12	عليات عليات ليد عليات عا عليات عليات	-44 	Silty SAND: fine to coarse grained, dark grey	D	MD	TOPSOIL 0.00 m: Organically impacted to 0. m from surface.
EX	E	Stable	Groundwater Not Encountered	ASS 1.20 - 1.30 m ASS1				0.15m SAND: fine to medium grained, pale grey 1.10m SAND: fine to medium grained, brown, with silt	D	L to MD	AEOLIAN
				ASS 2.30 - 2.40 m ASS2 ASS 2.90 - 3.00 m ASS3	Image:	5 5		2.20m SAND: fine to coarse grained, mottled brown and black, with clay 2.90m Clayey SAND: fine to coarse grained, brown	м	L to MD	
V								3.30m TERMINATED AT 3.30 m Target depth	м	L to MD	
ME EX R HA PT SOI AH PS AD/ AD/ HF/ WB	Rip Ha Pu N So Air Pe Sh V So V So V So A Ho S		er ing er n sam al auge t auge t auge ht auge ht auge	et VE E F H VH VH er V-Bit r: TC-Bit er	Very Easy (No Resi Easy Firm Hard Very Hard (Refusal ER Shown water inflow ■ water outflow		S F F F	IP - Hand/Pocket Penetrometer D - Dist ICP - Dynamic Cone Penetrometer ES - Env ISP - Perth Sand Penetrometer U - Thir IC - Moisture Content MOISTURE MOISTURE IP - Borehole Impression Test D - Dry IP - Photoionisation Detector W - Wei ISO - Vane Shear; P=Peak, L - Lique	turbed sa vironment n wall tub st t stc limit	tal sample be 'undistu	e S - Soft F - Firm

	nt:		\dde	enbrooke Pty L	td								ST PIT LOG SHEET
Proj	ect:	E	Bluey	/s Beach Subdi	ivision							H	ole No: TP007
	ation			/s Beach site plan					Job No: 50522033 Angle from Horizontal:	90°		Surface	Sheet: 1 of 1 e Elevation:
				5 tonne Excava	ator				Excavation Method: 80				
				isions:							(Contra	ctor: Cardno
)ate	Exc	avat	ed: 2	4/1/22		1	1		Logged By: KS		0	Checke	ed By: GA
Ex	cavati	on		Sampling & T	Testing				Material	Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle chara colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weathe defects and structure	acteristic, onents colour, ring,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.05 - 0.15 m ES4		-	للد علد علد علد علد ع للد علد علد علد علد ع لد علد علد		Silty SAND: fine to coarse grained, da	ark grey	D	MD	TOPSOIL 0.00 m: Organically impacted to 0.1 m from surface.
						-			0.20m SAND: fine to medium grained, pale	grey			AEOLIAN
				B 0.40 - 0.60 m		- 0.5							
						-							
						-							
						- 1.0							-
			countered			-							
EX	E	Unstable	Groundwater Not Encountered										
		Ŀ	Groundw			- 1.5 -					М	L	-
						-							
						- 2.0							-
						-							
						- 2.5							-
						-							
V						-			2.90m TERMINATED AT 2.90 m				
						3.0 -			Collapse				-
						-							
						-							
EX R HA PT SOI AH PS	Rip Ha Pu N So Air Pe	oper nd aug sh tube nic drill hamm rcussio	e ling er on sam	et VE E F H VH	ETRATION Very Easy (N Easy Firm Hard Very Hard (R		nce)	S H D P N	IELD TESTS PT - Standard Penetration Test IP - Hand/Pocket Penetrometer CP - Dynamic Cone Penetrometer SP - Perth Sand Penetrometer CG - Moisture Content BT - Plate Bearing Test	D - Disturt ES - Enviro	bed sar		S - Soft F - Firm
AS AD/ AD/ HF/ WB RR	V So T So A Ho Wa	lid fligh lid fligh llow flig	t auge ght aug e drillin	r: V-Bit r: TC-Bit ger	Water L shown water in water ou	flow	Date	IN P	 MP - Borehole Impression Test ID - Photoionisation Detector S - Vane Shear; P=Peak, R=Resdual (uncorrected kPa) 	M - Moist W - Wet PL - Plastic LL - Liquid w - Moistu	limit	tent	VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

	ject:	E	lueys	nbrooke Pty Li s Beach Subdi		n								He	ole No: TP0
	ation		-	s Beach							Job No: 50522033				Sheet: 1 o
				site plan							Angle from Horizontal: 9				e Elevation:
				5 tonne Excava	ator						Excavation Method: 800	mm Iooti			atau Caudes
				sions: 1/1/22							Logged By: KS				ctor: Cardno
	cavat		.u. 24	Sampling & T	octin-						Logged By: KS Material D	ecorintic-		MOUNE	Ju by. CA
				Sampling & I	Т	,						escription			
Method	Resistance	Stability	Water	Sample or Field Test	(bk p 150	CP ows er mm) 6 12	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle charact colour, secondary and minor compon. ROCK TYPE, grain size and type, col fabric & texture, strength, weatherin defects and structure	ents our,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
							-		сі сі	0.10m	Sitty CLAY: medium plasticity, dark brow trace fine to coarse gained sand, trace f coarse, angular gravel Sitty CLAY: medium plasticity, dark brow trace fine to coarse gained sand, trace f	fine to	M (<pl)< td=""><td>St</td><td>TOPSOIL 0.00 m: Organically impacted to 0. m from surface. COLLUVIUM</td></pl)<>	St	TOPSOIL 0.00 m: Organically impacted to 0. m from surface. COLLUVIUM
	E-F		itered		REF		-		СІ	0.25m	Coarse, angular gravel Sandy CLAY: medium plasticity, yellow mottled orange, fine to coarse grained s fine, angular gravel	brown	M (<pl)< td=""><td>St</td><td>RESIDUAL SOIL</td></pl)<>	St	RESIDUAL SOIL
EX		Stable	Groundwater Not Encountered	B 0.65 - 0.85 m	-		- 0.5 -		сі	0.55m	Gravelly CLAY: medium plasticity, pale mottled yellow, fine to coarse, angular g	grey jravel	M (>PL)	н	
			Grour				- 			0.90m	SILTSTONE, fine grained, blue-grey mo yellow	ottled			WEATHERED ROCK
	F				1		-		-		As above; decrease in fracturing/defects	s			
1	<u> </u>					++				1.40m	TERMINATED AT 1.40 m Refusal / Slow Progress on Weathered				
							- - 2.0 -								
							- - 2.5 - -								
							- 3.0 - -								
ME ER HAT SAH PS AD HF WE RR	Rip Ha Pu N So Air Pe Sh V/V So V/T So A Ho 3 Wa	oper nd aug sh tube nic drilli hamme rcussio ort spira lid flight lid flight llow flig	ng ar al auger: auger: auger: ht auge drilling	ler WAT TC-Bit TC-Bit	Very E Easy Firm Hard Very H ER Z Sho wa	asy (No	evel on		S H D P M P	IP - DCP - PSP - MC - PBT - MP - PID -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear; P=Peak, B=Pacedua (uncorrocted KPa)	D - Distr ES - Envi U - Thin MOISTURE D - Dry M - Mois W - Wet PL - Plas LL - Liqu	ironmenta wall tube st tic limit	nple Il sample I'undistu	S - Soft F - Firm

		ara			4.1										T LOG SH	
	ect:	E	Bluey	enbrooke Pty L /s Beach Subdi									H	ole	No: TP)09
	ation			/s Beach						Job No: 50522033					Sheet: '	of
				site plan						Angle from Horizontal				e Elevat	ion:	
				5 tonne Excava	ator					Excavation Method: 8				ctor: Ca	ardno	
				4/1/22						Logged By: KS				ed By: (
	cavati			Sampling & 1	Festing						al Description					
					DCP	Ē		Ę								
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	ponents , colour,	Moisture Condition	Consistency Relative Density	8	STRUCTURE Other Observations	
							ىتا غلى غلى غلى غلى غ	SM	0.10m	Silty SAND: fine to coarse grained, or grey-brown	dark	D	St	TOPSOIL 0.00 m: O	rganically impacted to	0.1
				ES 0.10 - 0.20 m ES7				5	0.1011	Sandy GRAVEL: fine to coarse, and	gular, grey, fine			m from su COLLUVI	rface.	
	E		tered			-		GP	0.45	to coarse grained sand, with clay		D	MD			
			Icount			- 0.5			0.45m	SANDSTONE, fine grained, with cla	iy seams,			WEATHE	RED ROCK	
— EX —		Stable	Groundwater Not Encountered			-				highly weathered						
	F		Gro			-										
						- 1.0 -										
	VH					-				As above; decrease in fracturing/de	fect spacing.					
					+++++				1.30m	TERMINATED AT 1.30 m Refusal / Slow Progress on Weathe	red Beek					
						- 1.5				Refusar / Slow Progress on Weathe						
						_										
						-										
						- 2.0										
						-										
						- 2.5										
						-										
						- 3.0										
						-										
						F										
						F										
MF	THOD			PFN	ETRATION			F	IELD T	ESTS	SAMPLES			<u> </u>	SOIL CONSISTER	ICY
EX R HA PT	Exc Rip Hai Put	cavato oper nd aug sh tube	er e	et VE E F H	Very Easy (N Easy Firm Hard		ance)	S H D	PT - IP - ICP -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer	B - Bull D - Dist ES - Env	k disturbe turbed sa /ironment n wall tub	mple al sample		VS - Very Soft S - Soft F - Firm St - Stiff	I
SOI AH PS	Air	nic drill hamm	er	pler WA	Very Hard (R	efusal)		M	1C -	Moisture Content	MOISTURE				VSt - Very Stift H - Hard	
PS AS AD/	She	rcussic ort spir lid fliah	al auge			evel on	Date	IN	ΛP -	Plate Bearing Test Borehole Impression Test	D - Dry M - Moi	st			RELATIVE DENS	
AD/ AD/ HF/	'T Sol A Hol	lid fligh llow flig	t auge	r: TC-Bit jer	✓ shown ─ water in ─ water ou			P V	ID - IS -	Photoionisation Detector Vane Shear; P=Peak,	W - Wei PL - Plas				L - Loose MD - Medium	
WB		ck rolle		9	Water of					R=Resdual (uncorrected kPa)		sture con	tent		D - Dense VD - Very Der	se

Pro	ent: ject:	E	Bluey	nbrooke Pty I s Beach Subd	.td ivision								He	ole No: TP0 [•]
	ation	1: E	Bluey	s Beach						Job No: 50522033				Sheet: 1
				site plan 5 tonne Excav	ato-					Angle from Horizontal: Excavation Method: 8		-		e Elevation:
				sions:	ator					Excavation Method: 6				ctor: Cardno
				4/1/22						Logged By: KS				ed By: GA
	cavat			Sampling &	Testina						al Description			,
					DCP	Ê		ç			•			
Method	Resistance	Stability	Water	Sample or Field Test	bCP (blows per 150 mm	(Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle char colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	ند علد علد علد علد علد علد علد علد ب	CL	0.10m	Silty Sandy CLAY: low plasticity, dar brown-black, trace fine to coarse gra trace fine angular gravel Silty Sandy CLAY: low plasticity, dar brown-black, trace fine to coarse gra	ained sand,	M (<pl)< td=""><td>St</td><td>TOPSOIL 0.00 m: Organically impacted to 0. m from surface. COLLUVIUM</td></pl)<>	St	TOPSOIL 0.00 m: Organically impacted to 0. m from surface. COLLUVIUM
				B 0.55 - 0.65 m		- - - 0.5			0.30m	brown-black, trace tine to coarse gra trace fine angular gravel CLAY: high plasticity, pale grey mott orange and red, trace silt				RESIDUAL SOIL
	E		ncountered	B 0.35 - 0.05 III		-		сн				M (>PL)	F	
EX		Stable	Groundwater Not Encountered			- 1.0 - -								
						- 1.5			1.45m	Gravelly CLAY: medium plasticity, pa mottled yellow, fine to coarse angula	ale grey ar gravel			EXTREMELY WEATHERED
	F					-		СІ	1.80m			M (>PL)	VSt	
	н					-				SILTSTONE, pale grey mottled dark	brown			WEATHERED ROCK
						- 2.0				As above; decrease in fracturing/def	fects			
V						F			2.15m	TERMINATED AT 2.15 m				
						- - - 2.5 -				Refusal / Slow Progress on Weather	red Rock			
						- 3.0 - -								
ME R HA PT SOH PS AD AD HF WE	Rij Ha Pu N Sc Ail Pe Sh V Sc VT Sc A Ho	cavato oper ind aug sh tube nic drill hamm rcussic ort spir lid fligh lid fligh	er er er al auge t auger t auger	t VE E F H VH VH VT SV-Bit - c TC-Bit er	Very Easy Firm Hard Very Hard (F TER Water L Shown water in water o	tefusal) .evel on flow		S F M F II	HP - DCP - PSP - MC - PBT - MP - PID -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test	D - Dist ES - Env U - Thin MOISTURE D - Dry M - Mois W - Wet PL - Plas LL - Liqu	urbed sa ironment i wall tube st	al sample e 'undistu	S - Soft F - Firm

Pro	ent: ject:	E	Blueys	nbrooke Pty Li s Beach Subdi	td vision					H	ole No: TP0
	ation		-	Beach				Job No: 50522033			Sheet: 1
				ite plan				Angle from Horizontal: 90°			e Elevation:
			e: 13.5 imens	tonne Excava	alor			Excavation Method: 800mm Toot			ctor: Cardno
			ed: 24					Logged By: KS			ed By: GA
	cavat			Sampling & T	estina			Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•	Å					علد علد بلد علد ع علد علد بلد علد ع	щ 	defects and structure Silty Sandy CLAY: low plasticity, dark brown, fine to coarse grained sand, trace fine, angular gravel	D	St	TOPSOIL 0.00 m: Organically impacted to 0 m from surface.
	E	ble	Groundwater Not Encountered				1	0.20m Gravelly CLAY: low plasticity, orange mottled pale grey, fine to coarse, angular gravel	M (>PL)	VSt	RESIDUAL SOIL
EX	F	Stable	Groundwate		REF _			0.50m Clayey GRAVEL: fine to coarse, angular, pale grey mottled orange clay As above; decrease in fracturing/defects			WEATHERED ROCK
¥.	н							0.95m TERMINATED AT 0.95 m			
ME R HA PT SO AF SO AD AD HF WE	Rij Pu Pu N Sc Air Pe Sh V Sc V Sc A Ho	oper nd aug sh tube nic dril hamm rcussic ort spii lid fligh lid fligh llow flig	e ling	ler WAT T-C-Bit r	ETRATION Very Easy (No Resis: Easy Firm Hard Very Hard (Refusal) TER Shown water inflow water outflow		F F F F	IP - Hand/Pocket Penetrometer ICP - Dynamic Cone Penetrometer SP - Perth Sand Penetrometer IC - Moisture Content BT - Plate Bearing Test ID - Photoionisation Detector ID - Photoionisation Detector S - Vane Shear; P=Peak, IL - Lique	ist	mple al sample e 'undistu	S - Soft F - Firm

	ject:	E	Bluey	nbrooke Pty L s Beach Subdi	td vision					H	ole No: TP0 [•]
	ation			/s Beach				Job No: 50522033			Sheet: 1
				site plan 5 tonne Excava	tor			Angle from Horizontal: 90° Excavation Method: 800mm Toot			e Elevation:
				sions:	alor			Excavation Method: 600mm 100t			ctor: Cardno
				4/1/22				Logged By: KS			ed By: GA
	cavat			Sampling & T	esting			Material Description			,
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mm)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
							CL CL	Sandy CLAY: low plasticity, grey, fine to coarse grained sand, trace fine to coarse, angular gravel Sandy CLAY: low plasticity, grey, fine to coarse grained sand, trace fine to coarse, angular gravel	D	St	TOPSOIL 0.00 m: Organically impacted to 0. m from surface. COLLUVIUM
			ired	B 0.70 - 0.90 m				0.50m CLAY: medium to high plasticity, pale grey mottled orange and red, trace silt			RESIDUAL SOIL
EX		Stable	Groundwater Not Encountered				CI- CH		M (<pl)< td=""><td>VSt</td><td></td></pl)<>	VSt	
							CI	1.50m Sitty CLAY: medium plasticity, grey mottled yellow, trace fine to coarse grained sand, trace fine to coarse, angular gravel 1.80m	M (≈PL)	VSt	
V					 - -2.0 - -			SILTSTONE, fractured As above; decrease in fracturing/defects 2.20m			WEATHERED ROCK
								TERMINATED AT 2.20 m Refusal / Slow Progress on Weathered Rock			
ME EX R HA PT SO AH	Rij Ha Pu N So	cavato oper nd aug sh tube nic drill hamm	er e ing		I I I - 3.0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	ance)	S H D P	P - Hand/Pocket Penetrometer D - Dis CR Dunamic Cope Penetrometer ES - Env	k disturbe turbed sa vironment n wall tub	mple al sample	S - Soft F - Firm
PS AS AD AD HF WE RR	Pe Sh VV So VT So A Ho B W	rcussic ort spir lid fligh	on sam al auge t auge t auge ght auge drillin	er r: V-Bit r: TC-Bit jer	ER Water Level or shown water inflow water outflow	n Date	P IN P	BT Plate Bearing Test D - Dry /IP - Borehole Impression Test M - Moi ID - Photoionisation Detector W - We S - Vane Shear; P=Peak, L - Plat Re-Reducting (Uncorrected (KPR)) LL - Lique	, ist t stic limit	tent	RELATIVE DENSITY VL - Very Loose L Loose MD - Medium Der D - Dense VD - Very Dense

	ect:	E	Bluey	nbrooke Pty I s Beach Subc	livision								H	ole No: TP0 [,]
	ation		-	s Beach						Job No: 50522033	0.0%		f a a	Sheet: 1 o
				site plan 5 tonne Excav	ator					Angle from Horizontal: Excavation Method: 80				e Elevation:
				sions:										ctor: Cardno
				4/1/22						Logged By: KS				ed By: GA
Ex	cavat	on		Sampling &	Testing						Description			-
Method	Resistance	Stability	Water	Sample or Field Test	,	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle chara colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	onents colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
1							لك علد علد علد علد ع لك علد علد علد علد ع	CL		Sandy CLAY: low plasticity, grey, fine grained sand	e to coarse	M (≈ PL)	St	TOPSOIL 0.00 m: Organically impacted to 0. m from surface.
).5		СІ	0.15m	Silty CLAY: medium plasticity, grey m	nottled yellow	M (>PL)	F to St	ALLUVIUM
— EX —	E	Stable	24/01/22	ASS 1.60 - 1.70 m ASS4		1.0		CŀCH	<u>0.80m</u>	Silty CLAY: medium to high plasticity mottled yellow	, pale grey	M (>PL)	VSt	
				ASS 2.00 - 2.10 m ASS5		2.0		СІ	1.95m	Gravelly CLAY: medium plasticity, gro	ey, fine to	M (>PL)	VSt	
	E-F			ASS 2.90 - 3.00 m ASS6		3.0		СН	2.80m	Silty CLAY: high plasticity, dark grey, medium, angular gravel As above: with fine to medium, angul		M (>PL)	VSt	RESIDUAL SOIL
ME EX HA PT SOH PS AD AD HF RR	Rip Ha Pu N So Air Pe Sh /V So /T So A Ho 3 Wa	per nd aug sh tube nic drill hamm rcussic ort spir id fligh id fligh llow flig	er er al samp al auger t auger ght auge e drilling	t VE E F H VH Sler WA I S-V-Bit - t C-Bit F er	Very Easy (No Re Easy Firm Hard Very Hard (Refus TER Water Leve shown water inflow	al) el on l		S H D P M P	IELD T PT - IP - ICP - SP - IC - BT - MP - ID -	ESTSVIINATED AT 3.50 m Target depth Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	D - Dis ES - En U - Thi MOISTURE D - Dr M - Moi W - We PL - Pla LL - Liq	in wall tube : y pist	nple al sample e 'undistu	S - Soft F - Firm

	ent: ject:	E	Bluey	nbrooke Pty L s Beach Subd	.td ivisio	on							H	ole No: TP0
	atior	1: E	Bluey	s Beach							Job No: 50522033			Sheet: 1
				site plan	- 4						Angle from Horizontal: 90°			e Elevation:
				5 tonne Excav sions:	ator						Excavation Method: 800mm Too			ctor: Cardno
				4/1/22							Logged By: KS			ed By: GA
	xcavat			Sampling &	Testin	a					Material Description			
	υ			1 5 4		DCP	Ê		Б		· .			
Method	Resistance	Stability	Water	Sample or Field Test	150	lows per) mn 3 6 1	Dept (r	Graphic Log	Classification		SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
]]]	_	لد علد علد علد علد ع لد علد علد ال علد علد	CL- CI	0.10m	Sandy CLAY: low to medium plasticity, dark brown, fine to coarse grained sand, trace fine to coarse, rounded gravel	~		TOPSOIL 0.00 m: Organically impacted to 0 m from surface. COLLUVIUM
				B 0.30 - 0.40 m			-		CL- CI		Sandy CLAY: low to medium plasticity, dark brown, fine to coarse grained sand, trace fine to coarse, rounded gravel	D	St	
							0.5			0.40m	CLAY: medium to high plasticity, pale grey mottled orange, trace fine, angular gravel, trace silt			RESIDUAL SOIL
	E	le	Groundwater Not Encountered				-		CI- CH			M (<pl)< td=""><td>VSt</td><td></td></pl)<>	VSt	
Ě		Stable	Groundwater		REF		- 1.0		CL- CI	0.90m	Gravelly CLAY: low to medium plasticity, grey mottled orange, fine to coarse angular to sub-angular gravel	M (<pl)< td=""><td>VSt</td><td>-</td></pl)<>	VSt	-
	F	-					-		GC	1.10m	Clayey GRAVEL: fine to coarse, angular, grey mottled orange	M (<pl)< td=""><td>MD</td><td>EXTREMELY WEATHERED</td></pl)<>	MD	EXTREMELY WEATHERED
							-			1 40				
		1					ŀ	x C	-	1.40m	SILTSTONE, fine grained, grey mottled orange,	1		WEATHERED ROCK
	н						- 1.5				fractured			
¥						 	-			1.65m	As above; decrease in fracturing/defects			
							-				Refusal / Slow Progress on Weathered Rock			
ME R HA PT SCH PS AD AD HF WI R	Ri A Ha DN So A Ai DN So A Ai S St S D/V So D/T So FA Ho B W	cavato pper and aug ish tube onic drill r hamm ercussic iort spir olid fligh	er ing er n samp al auger t auger t auger ht auger	t VE F H VH VH VT ST ST C-Bit Fr	Easy Firm Hard Very TER SI	Easy Hard /ater hown	(No Resista (Refusal) Level on		S F M F II	ΗР - DCP - PSP - ИС - PBT - MP - PID -	Standard Penetration Test B - Building Hand/Pocket Penetrometer D - Dite Dynamic Cone Penetrometer U - The Perth Sand Penetrometer U - The Moisture Content Plate Bearing Test D - Dr Plate Bearing Test M - Mr Photoionisation Detector W - Wu Vane Shear, P=Peak, L - Lic	y bist	mple al sample e 'undistu	S - Soft F - Firm

	ject:		Bluey	enbrooke Pty L /s Beach Subdi								H	ole No: TP0
	atior			/s Beach						Job No: 50522033			Sheet: 1
				site plan .5 tonne Excava	tor					Angle from Horizontal: 90° Excavation Method: 800mm To			e Elevation:
				isions:						Excavation Method. 800mm 10			ctor: Cardno
				4/1/22						Logged By: KS			ed By: GA
	cavat			Sampling & T	estina					Material Descripti			
			1	1 3 4	DCP	Ê		c		· · ·			
Method	Resistance	Stability	Water	Sample or Field Test	(blows per 150 mm)	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	له عله عله عله عله ع له عله عله	CL- CI	0.10m	Sandy CLAY: low to medium plasticity, dark brown, fine to coarse grained sand, trace fine to coarse gravel			TOPSOIL 0.00 m: Organically impacted to 0 m from surface.
						-		CL- CI	0.30m	Sandy CLAY: low to medium plasticity, dark brown, fine to coarse grained sand, trace fine to coarse gravel		St	COLLUVIUM
						- 0.5 -		CI- CH	0.0011	Silty CLAY: medium to high plasticity, pale grey mottled brown, trace fine angular gravel, trace fin to coarse grained sand	M (<pl)< td=""><td>St</td><td>RESIDUAL SOIL</td></pl)<>	St	RESIDUAL SOIL
EX	E-F	Stable	dwater Not Encountered	B 1.00 - 1.20 m		- - 1.0 -			1.00m	Gravelly CLAY: low to medium plasticity, grey mottled orange, fine to coarse angular to sub-angular gravel			
			Groun			- - - 1.5		CL- CI	1.45m	Clayey GRAVEL: fine to coarse, angular, grey mottled orange	M (<pl)< td=""><td>St</td><td>EXTREMELY WEATHERED</td></pl)<>	St	EXTREMELY WEATHERED
			B 1.00 - 1.20 m B 1.00 - 1.20 m I I I I I I I I						1.80m	SILTSTONE, grey mottled orange	M (<pl)< td=""><td>MD</td><td>WEATHERED ROCK</td></pl)<>	MD	WEATHERED ROCK
V	н					- 2.0			2.20m	As above; decrease in fracturing/defects			
						- - 2.5 - - - - - 3.0 -				TERMINATED AT 2.20 m Refusal / Slow Progress on Weathered Rock			
ME EX R HA PT SCH PS AD AD F F R R	Ri Ha PL N Sc Ain Pe Sh V Sc V Sc V Sc A Ho 3 W	oper ind aug sh tub nic dri hamn rcussi ort spi lid flig lid flig llow fli	e ling her on sam ral auge nt auge ght auge ght auge e drillin	et VE E F H VH VH er r: V-Bit r: TC-Bit Per	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	^{efusal)} evel on 'low		S H D P M P IN P	:PT - IP - ICP - ISP - IC - IBT - ИР - ID -	Hand/Pocket Penetrometer D - Dynamic Cone Penetrometer U - Perth Sand Penetrometer U - Moisture Content MOISTU Plate Bearing Test D - Borehole Impression Test M - Photoionisation Detector W - Vane Shear, P=Peak, LL -	Bulk disturbe Disturbed sa Environment Thin wall tub	imple al sample e 'undistu	S - Soft F - Firm

	ject:	E	Blueys	nbrooke Pty Li s Beach Subdi	vision						H	ole No: TP0 [,]
	ation		-	Beach					Job No: 50522033			Sheet: 1
				site plan					Angle from Horizontal: 90°			e Elevation:
				tonne Excava	ator				Excavation Method: 800mm Toot			ctor: Cardno
			ed: 24						Logged By: KS			ed By: GA
	cavat		50. 24	Sampling & T	octing				Material Description		SHECK	eu by. OA
Method	Resistance	Stability	Water	Sample or Field Test	-	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
A	Ř				1 3 6 12		ىلىر غاير غاير غاير غ		defects and structure Silty Clayey SAND: fine to coarse grained, brown			TOPSOIL 0.00 m: Organically impacted to 0.
						0.5		SC CI- CH	0.20m CLAY: medium to high plasticity, orange mottled grey	M (<pl)< td=""><td>St St</td><td>m from surface.</td></pl)<>	St St	m from surface.
	E-F					1.0			0.60m Silty CLAY: medium to high plasticity, grey mottled orange			
		۵		SB 1.20 - 1.40 m		-		CI- CH	As above; trace fine to coarse grained sand, trace fine angular gravel	M (>PL)	VSt	
EX		Stable	24/01/22			1.5			1.80m Silty CLAY: medium to high plasticity, pale grey mottled orange, with fine to coarse, angular gravel			-
	F					2.0		Cŀ CH		M (♥PL)	н	
						2.5		CL	2.50m Silty Gravelly CLAY: low plasticity, pale grey, fine to coarse, angular gravel	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
<u> </u>						3.0—	<u>~~~</u>		3.00m TERMINATED AT 3.00 m Target depth			
ME EX R HA PT SOH PS AD AD HF	Rij Pu Pu N Sc Aii Pe Sh V Sc VT Sc A Ho	cavato oper nd aug sh tube nic drill hamm rcussic ort spir lid fligh lid fligh llow flig	ing	ler WAT TC-Bit r	ER Water Leve shown water inflow	sal) el on l v		SI H D P M	P - Hand/Pocket Penetrometer D - Dist CP Dynamic Cone Penetrometer ES - Env SP - Perth Sand Penetrometer U - Thir C - Moisture Content MOISTURE ST - Plate Bearing Test D - Dry P Borehole Impression Test M - Moisture Weight D - Protoionisation Detector W Weight	n wall tube st t stic limit	mple al sample e 'undistu	S - Soft F - Firm

Clie Proj	nt: ect:	E	Blueys	brooke Pty L Beach Subdi									He	ole No: TP0 [,]
	ation		-	Beach						Job No: 50522033				Sheet: 1
				ite plan tonne Excava	ator					Angle from Horizontal Excavation Method: 8				e Elevation:
			mens											ctor: Cardno
			ed: 24							Logged By: KS				ed By: GA
Ex	cavat	on		Sampling & 1	esting						al Description			-
Method	Resistance	Stability	Water	Sample or Field Test	DCP (blows per 150 mn	Dept (r	Graphic Log	Classification		SOIL TYPE, plasticity or particle chan colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	ponents , colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						2	لله عليه عليه عليه عليه لله عليه عليه اله عليه عليه	SМ	0.10m	Silty SAND: fine to coarse grained, or SAND: fine to coarse grained, grey,		D	St	TOPSOIL 0.00 m: Organically impacted to 0. m from surface. AEOLIAN
EX-	Е	Stable	Groundwater Not Encountered			- - 0.5 - - - - - - - - - - -		SP				D	F to St	
			0			- - 1.5 - - -		sc	1.40m	Clayey SAND: fine to coarse grained		М	St to VSt	ALLUVIUM RESIDUAL SOIL
v						[СІ	2.20m	TERMINATED AT 2.20 m				
						- 2.5				Target depth				
ME EX HA PT SOI AH PS AS AD/	Rip Ha Pu N So Air Pe Sh	cavator oper nd aug sh tube nic drill hamm rcussic ort spir	ing	er WAT	Line of the second seco	I No Resistan Refusal)		SH DP PN P	IP - DCP - DSP - MC - DBT - MP -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test	D - Disti ES - Envi U - Thin MOISTURE D - Dry M - Mois	urbed sa ronment wall tube	al sample	B S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose
AD/ HF/ WB RR	/T So A Ho B Wa	lid fligh llow flig	t auger: ht auge e drilling	rC-Bit	water i water o	nflow			'ID - 'S -	Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	PL - Plas LL - Liqu	tic limit id limit ture con	tent	L - Loose MD - Medium Der D - Dense VD - Very Dense

APPENDIX

LABORATORY TEST REPORTS

Cardno 👓 🕥 Stantec

Blueys Beach Contaminaton Assessment

				BT	EX					TPH					CRC Car	re TPH F	ractions						
	Vic EPA IWRG 621 Other OCP (Total)*	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	C6 - C9	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	C6-C10	C10-C16	C16-C34	C34-C40	C10 - C40 (Sum of total)	F1: C6-C10 less BTEX	F2: >C10-C16 less Naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz (a) an thracene
	MG/KG	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.2	0.1	0.3	20	20	50	50	50	20	50	100	100	100	20	50	0.5	0.5	0.5	0.5
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m																							
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m		50	85	70			105		120					120	300	2800		180					
NEPM 2013 HIL, Residential A																							
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m		0.7	480	NL			110											50	280				
NEPM 2013 Management Limits, R/P&POS, Coarse Soil								700	1000				700	1000	2500	10000							

Field_ID Location_Code Sample_Depth_Range Sampled_Date_Time Matrix_Description

ES1	ES1	0.1-0.2	24/01/2022	Silty CLAY (dark brown)	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5
ES2	ES2	0.0-0.1	24/01/2022	Sandy CLAY (dark brown)	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5
ES3	ES3	0.0-0.1	24/01/2022	Sandy CLAY (dark brown-black)	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5
ES4	ES4	0.05-0.15	24/01/2022	Silty SAND (dark grey)	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5
ES5	ES5	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5
ES6	ES6	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	110	120	230	<20	<50	220	110	330	<20	<50	<0.5	<0.5	<0.5	<0.5

Statistical Summary																							
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5
Minimum Detect	ND	ND	ND	110	120	230	ND	ND	220	110	330	ND	ND	ND	ND	ND	ND						
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	110	120	230	<20	<50	220	110	330	<20	<50	<0.5	<0.5	<0.5	<0.5
Maximum Detect	ND	ND	ND	110	120	230	ND	ND	220	110	330	ND	ND	ND	ND	ND	ND						
Average Concentration	0.05	0.05	0.05	0.05	0.1	0.05	0.15	10	10	39	41	59	10	25	78	60	97	10	25	0.25	0.25	0.25	0.25
Median Concentration	0.05	0.05	0.05	0.05	0.1	0.05	0.15	10	10	25	25	25	10	25	50	50	50	10	25	0.25	0.25	0.25	0.25
Standard Deviation	0	0	0	0	0	0	0	0	0	35	39	84	0	0	69	24	114	0	0	0	0	0	0
Number of Guideline Exceedances	0	4	4	4	0	0	4	0	0	0	0	0	0	0	0	0	0	4	6	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	4	4	4	0	0	4	0	0	0	0	0	0	0	0	0	0	4	6	0	0	0	0

						PA	ιH			
	Benzo(a)pyrene	Benzo(a)pyrene TEQ (half LOR)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ (zero)	Benzo(b+j)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	mg/yFluoranthene
/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.7									
		3								
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6	6	6	6	6	6	6	6	6	6	6
D	0	6	6	0	0	0	0	0	0	0
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
D	ND	0.6	1.2	ND	ND	ND	ND	ND	ND	ND
).5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ID	ND	0.6	1.2	ND	ND	ND	ND	ND	ND	ND
25	0.25	0.6	1.2	0.25	0.25	0.25	0.25	0.25	0.25	0.25
25	0.25	0.6	1.2	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0	0	0	0	0	0	0	0	0	0	0
))	4	0	0	0	0	0	0	0	0	0
0	4	0	0	0	0	0	0	0	0	0

🗘 Cardno 🔤 🕥 Stantec

Blueys Beach Contaminaton Assessment

										Me	tals					Inorga	nics	SVOCs											Orga	nochlorine Pestic
	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	PAHs (Sum of total)	Phenanthrene	Pyrene	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Conductivity (1:5 aqueous extract)	Moisture Content (dried @ 103°C)	pH (aqueous extract)	EPN	Vic EPA IWRG 621 OCP (Total)*	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	d-BHC	000	рот	DDT+DDE+DDD	Dieldrin Endosulfan I
						_	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	_	1 %	1													mg/kg mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	2	0.4	5	5	5	0.1	5	5	10	1	0.1	0.2	0.1	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05 0.05
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m			170				100		190	60	1100		30	70														180		
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m																														
NEPM 2013 HIL, Residential A				300			100	20		6000	300	40	400	7400									6		50				240	
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m			5																											
NEPM 2013 Management Limits, R/P&POS, Coarse Soil																														

Field_ID Location_Code Sample_Depth_Range Sampled_Date_Time Matrix_Description

			Sumple_Bepth_Range	Sumpled_Bute_mine	matrix_bescription																															
ES	1	ES1	0.1-0.2	24/01/2022	Silty CLAY (dark brown)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.3	<0.4	5.9	<5	10	<0.1	<5	28	21	18	6.2	<0.2	<0.1	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ES	2	ES2	0.0-0.1	24/01/2022	Sandy CLAY (dark brown)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7.1	<0.4	11	6.5	17	<0.1	<5	22	22	20	5.5	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ES	3	ES3	0.0-0.1	24/01/2022	Sandy CLAY (dark brown-black)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18	<0.4	7.1	<5	17	<0.1	<5	9.7	12	17	5.9	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ES	4	ES4	0.05-0.15	24/01/2022	Silty SAND (dark grey)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.6	<0.4	5	<5	9.9	<0.1	<5	6.5	28	14	6	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ES	5	ES5	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.7	<0.4	<5	<5	7.8	<0.1	<5	<5	24	9.3	6.2	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ES	6	ES6	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	<0.4	<5	6.3	8.9	<0.1	<5	25	330	14	6.3	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Statistical Summary																															
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects	0	0	0	0	0	0	6	0	4	2	6	0	0	5	6	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.7	<0.4	<5	<5	7.8	<0.1	<5	<5	12	9.3	5.5	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	< 0.05	6 <0.05	<0.05
Minimum Detect	ND	ND	ND	ND	ND	ND	2.7	ND	5	6.3	7.8	ND	ND	6.5	12	9.3	5.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18	<0.4	11	6.5	17	<0.1	<5	28	330	20	6.3	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Maximum Detect	ND	ND	ND	ND	ND	ND	18	ND	11	6.5	17	ND	ND	28	330	20	6.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration	0.25	0.25	0.25	0.25	0.25	0.25	6.7	0.2	5.7	3.8	12	0.05	2.5	16	73	15	6	0.1	0.05	0.025	0.025	0.025	0.025	0.025	0.05	0.025	0.025	0.025	0.025	0.025	0.025
Median Concentration	0.25	0.25	0.25	0.25	0.25	0.25	4.45	0.2	5.45	2.5	9.95	0.05	2.5	15.85	23	15.5	6.1	0.1	0.05	0.025	0.025	0.025	0.025	0.025	0.05	0.025	0.025	0.025	0.025	0.025	0.025
Standard Deviation	0	0	0	0	0	0	5.8	0	3.2	2	4.1	0	0	11	126	3.8	0.29	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0

Cardno 👓 🕥 Stantec

Blueys Beach Contaminaton Assessment

					ides																								Org	anopho	phorou	s Pestic	ides			
					Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	Tokuthion	Azinophos methyl	Bolstar (Sulprofos)	Chlorfenvinphos	Chlorpyrifos	Chlorpyrifos-methyl	Coumaphos	Demeton-O	Demeton-S	Diazinon	Dichlorvos	Dimethoate	Disulfoton	Ethion	Ethoprop	Fenitrothion	Fensulfothion	Fenthion	Malathion	Merphos	Methyl parathion
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.5	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
NEPM 2	2013 EIL UR/POS	S, low pH, CEC, clay conte	nt - aged 0-2m																																	
NEPM 2	2013 ESL UR/PO	S, Coarse Soil 0-2m																																		
NEPM 2	2013 HIL, Reside	ential A					10				6		10	300	20					160																
NEPM 2	2013 Soil HSL Re	esidential A&B, for Vapour	r Intrusion, Clay 0-1m																																	
NEPM 2	2013 Manageme	ent Limits, R/P&POS, Coar	rse Soil																																	
Field_II	_	ode Sample_Depth_Ran	nge Sampled_Date_Tir	ne Matrix_Description																																
ES1	ES1	0.1-0.2	24/01/2022	Silty CLAY (dark brown)					<0.05									<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES2	ES2	0.0-0.1	24/01/2022	Sandy CLAY (dark brown)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES3	ES3	0.0-0.1	24/01/2022	Sandy CLAY (dark brown-black)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES4	ES4	0.05-0.15	24/01/2022	Silty SAND (dark grey)					<0.05							<0.2		<0.2		<0.2		<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES5	ES5	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES6	ES6	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	10.05	<0.0F	<0.05	<0.0F	10.05	0.05	0.05	0.05	0.05	0.05	.0.5	0.0						<2				-0.2	-0.2	-0.2	-0.2	-0.2	10.2	-0.2	.0.2	<0.2	-0.2	-0.2

Fiel

			oumpie_septil_numge	eampies_sate_inne																								_
ES:	1	ES1	0.1-0.2	24/01/2022	Silty CLAY (dark brown)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	Ē
ES2	2	ES2	0.0-0.1	24/01/2022	Sandy CLAY (dark brown)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	Ē
ES	3	ES3	0.0-0.1	24/01/2022	Sandy CLAY (dark brown-black)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	Ē
ES4	4	ES4	0.05-0.15	24/01/2022	Silty SAND (dark grey)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	Ē
ESS	5	ES5	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	Ē
ES	6	ES6	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	Ē

Statistical Summary																																
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.25	0.1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Median Concentration	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.25	0.1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Blueys Beach Contaminaton Assessment

Pesticides

	Mevinphos (Phosdrin)	Monocrotophos	Naled (Dibrom)	Omethoate	Phorate	Pyrazophos	Ronnel	Terbufos	Trichloronate	Tetrachlorvinphos	Parathion	Pirimiphos-methyl	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	m
EQL	0.2	2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	
NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged 0-2m																	
NEPM 2013 ESL UR/POS, Coarse Soil 0-2m																	
NEPM 2013 HIL, Residential A																	
NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Clay 0-1m																	
NEPM 2013 Management Limits, R/P&POS, Coarse Soil																	

Field_ID Location_Code Sample_Depth_Range Sampled_Date_Time Matrix_Description

Field_ID	Location_coue	Jampie_Deptil_Nange	Jampieu_Date_Time	Wath _Description																	
ES1	ES1	0.1-0.2	24/01/2022	Silty CLAY (dark brown)	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
ES2	ES2	0.0-0.1	24/01/2022	Sandy CLAY (dark brown)	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
ES3	ES3	0.0-0.1	24/01/2022	Sandy CLAY (dark brown-black)	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
ES4	ES4	0.05-0.15	24/01/2022	Silty SAND (dark grey)	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
ES5	ES5	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
ES6	ES6	0.0-0.1	24/01/2022	Silty Sandy CLAY (dark brown)	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<

Statistical Summary

statistical summary																	
Number of Results	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ī —
Minimum Concentration	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Maximum Concentration	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Average Concentration	0.1	1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.05	0.05	0.05	0.
Median Concentration	0.1	1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.05	0.05	0.05	0
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Polyc	hlorinat	ed Biph	enyls		
Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.1	0.1	0.1	0.1	0.1	0.1
					1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6	6	6	6	6	6
0	0	0	0	0	0
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ND	ND	ND	ND	ND	ND
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ND	ND	ND	ND	ND	ND
0.05	0.05	0.05	0.05	0.05	0.05
0.05	0.05	0.05	0.05	0.05	0.05
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

NATA Accredited Accreditation Number 1261 Site Number 18217

Environment Testing

1111

ac-MRA

"minhala

NATA

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

Attention:

Kosta Sykiotis

Report
Project name
Project ID
Received Date

860815-S-V3 BLUEYS BEACH 50522033 Feb 04, 2022

Client Sample ID			ES1	ES2	ES3	ES4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N22-Fe08876	N22-Fe08877	N22-Fe08878	N22-Fe08879
Date Sampled			Jan 24, 2022	Jan 24, 2022	Jan 24, 2022	Jan 24, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	_	01110				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	78	61	100	83
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Unit mg/kg mg/kg mg/kg mg/kg % % % % % % % % % % % % % % % % % % %	$< 0.5 \\ < 0.5 \\ < 0.5 \\ 134 \\ 141 \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	ES2 Soil N22-Fe08877 Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	ES3 Soil N22-Fe08878 Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 126 145 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	ES4 Soil N22-Fe08879 Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	N22-Fe08876 Jan 24, 2022	N22-Fe08877 Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 148 132 < < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	N22-Fe08878 Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 126 145 < 0.1 < 0.05 	N22-Fe08879 Jan 24, 2022 < 0.5< 0.5< 0.5133123< 0.1< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05< 0.05
mg/kg mg/kg mg/kg mg/kg % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 134 141 < 0.1 < 0.05 <	Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.1 < 0.05 	Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 126 145 < 0.1 < 0.05 < 0.	Jan 24, 2022 < 0.5 < 0.5 < 0.5 < 0.5 < 133 123 < 0.1 < 0.05 <
mg/kg mg/kg mg/kg mg/kg % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 134 141 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.5 < 0.5 < 0.5 < 0.5 148 132 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0	$< 0.5 \\< 0.5 \\< 0.5 \\< 0.5 \\126 \\145 \\\\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.0$	< 0.5 < 0.5 < 0.5 < 0.5 133 123 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$< 0.5 \\ < 0.5 \\ < 0.5 \\ 134 \\ 141 \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	< 0.5 < 0.5 < 0.5 148 132 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ 126 \\ 145 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ 133 \\ 123 \\ \end{array}$
mg/kg mg/kg mg/kg % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$< 0.5 \\ < 0.5 \\ < 0.5 \\ 134 \\ 141 \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	< 0.5 < 0.5 < 0.5 148 132 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ 126 \\ 145 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ 133 \\ 123 \\ \end{array}$
mg/kg mg/kg mg/kg % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$< 0.5 \\ < 0.5 \\ < 0.5 \\ 134 \\ 141 \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	< 0.5 < 0.5 < 0.5 148 132 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ 126 \\ 145 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ 133 \\ 123 \\ \end{array}$
mg/kg mg/kg % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 134 141 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.0	$\begin{array}{c} < 0.5 \\ < 0.5 \\ 148 \\ 132 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ < 0.5 \\ 126 \\ 145 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ < 0.5 \\ 133 \\ 123 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ $
mg/kg % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{c} < 0.5 \\ 134 \\ 141 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ 148 \\ 132 \\ \hline \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c c} < 0.5 \\ 126 \\ 145 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c} < 0.5 \\ 133 \\ 123 \\ \hline \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$
% % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{c c} & 134 \\ & 141 \\ \hline \\ & < 0.1 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0$	$\begin{array}{c c} 148 \\ 132 \\ \hline \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05$	$\begin{array}{c c} 126 \\ 145 \\ \hline \\ < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	$\begin{array}{c c} & 133 \\ & 123 \\ \hline \\ & < 0.1 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \\ & < 0.05 \end{array}$
% mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{c c} & 141 \\ & \\ & \\ & \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array}$	132 < 0.1	145 < 0.1	123 < 0.1
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{c} < 0.1 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	 < 0.1 < 0.05 	 < 0.1 < 0.05 	 < 0.1 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.05 < 0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05
mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05
mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05	
mg/kg mg/kg mg/kg	< 0.05 < 0.05	< 0.05		< 0.05
mg/kg mg/kg	< 0.05		< 0.05	
mg/kg				< 0.05
	~ 0.05	< 0.05	< 0.05	< 0.05
ma/ko		< 0.05	< 0.05	< 0.05
		< 0.05	< 0.05	< 0.05
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.5	< 0.5	< 0.5
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.05	< 0.05	< 0.05
mg/kg		< 0.1	< 0.1	< 0.1
				< 0.1
				128
%	150	146	141	148
	-			
				< 0.2
				< 0.2
				< 0.2
				< 0.2
				< 0.2
				< 2
				< 0.2
				< 0.2
				< 0.2
				< 0.2
ma/ka				< 0.2
				< 0.2
mg/kg	0.2			< 0.2
	% % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	% 150 mg/kg < 0.2	$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Client Semple ID			504	500	500	504
Client Sample ID			ES1	ES2	ES3	ES4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N22-Fe08876	N22-Fe08877	N22-Fe08878	N22-Fe08879
Date Sampled			Jan 24, 2022	Jan 24, 2022	Jan 24, 2022	Jan 24, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides				_		
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate Triphenylphosphate (surr.)	1	mg/kg %	133	94	117	121
Polychlorinated Biphenyls	I	70	155			121
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	133	141	123	128
Tetrachloro-m-xylene (surr.)	1	%	150	146	141	148
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	21	22	12	28
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	6.2	5.5	5.9	6.0
% Moisture	1	%	18	20	17	14
Heavy Metals						
Arsenic	2	mg/kg	5.3	7.1	18	3.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	5.9	11	7.1	5.0
Copper	5	mg/kg	< 5	6.5	< 5	< 5
Lead	5	mg/kg	10	17	17	9.9
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	28	22	9.7	6.5

Client Sample ID Sample Matrix			ES5 Soil	ES6 Soil
Eurofins Sample No.			N22-Fe08880	N22-Fe08881
Date Sampled			Jan 24, 2022	Jan 24, 2022
•		1.1	Jan 24, 2022	Jan 24, 2022
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fra				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	110
TRH C29-C36	50	mg/kg	< 50	120
TRH C10-C36 (Total)	50	mg/kg	< 50	230
BTEX	0.4		0.4	
Benzene	0.1	mg/kg	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total* 4-Bromofluorobenzene (surr.)	0.3	mg/kg	< 0.3	< 0.3
		%	113	91
Total Recoverable Hydrocarbons - 2013 NEPM Fra				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
Polycyclic Aromatic Hydrocarbons	0.5		0.5	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
	0.5	mg/kg	< 0.5 < 0.5	< 0.5
Chrysene Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	
Fluoranthene Fluorene	0.5	mg/kg mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5			
Naphthalene	0.5	mg/kg mg/kg	< 0.5 < 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	111g/kg %	112	67
p-Terphenyl-d14 (surr.)	1	%	139	75
Organochlorine Pesticides	1	/0	100	13
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.1	< 0.1
4.4-DDD 4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4-DDE 4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
	CU.U	I IIIY/KQ	CU.U2	< U.UD

Client Sample ID			ES5	ES6
Sample Matrix			Soil	Soil
Eurofins Sample No.			N22-Fe08880	N22-Fe08881
Date Sampled			Jan 24, 2022	Jan 24, 2022
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
d-HCH	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Hexachiorobenzene Methoxychlor	0.05	mg/kg mg/kg	< 0.05	< 0.05
Toxaphene	0.05		< 0.05	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.00	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	91	52
Tetrachloro-m-xylene (surr.)	1	%	148	73
Organophosphorus Pesticides		,,,		
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID			ES5	ES6
Sample Matrix			Soil	Soil
Eurofins Sample No.			N22-Fe08880	N22-Fe08881
Date Sampled			Jan 24, 2022	Jan 24, 2022
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	95	55
Polychlorinated Biphenyls				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	91	52
Tetrachloro-m-xylene (surr.)	1	%	148	73
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	220
TRH >C34-C40	100	mg/kg	< 100	110
TRH >C10-C40 (total)*	100	mg/kg	< 100	330
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	24	330
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	6.2	6.3
% Moisture	1	%	9.3	14
Heavy Metals				
Arsenic	2	mg/kg	2.7	3.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	< 5
Copper	5	mg/kg	< 5	6.3
Lead	5	mg/kg	7.8	8.9
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5
Zinc	5	mg/kg	< 5	25

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
ENM Exemption Suite - The excavated natural material order 2014 NSW EPA(exclu	ding Foreign Material)	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	Sydney	Feb 08, 2022	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25 °C as rec.)	Sydney	Feb 08, 2022	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Metals M8	Sydney	Feb 08, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Feb 08, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Feb 08, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Feb 07, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

		C'	Eurofins Env ABN: 50 005 08		ng Australia Pty	/ Ltd									Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	
veb: w	ww.eurofins.com.au		Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564	Geelong d 19/8 Lew th Groveda VIC 3210 5000	valan Street 1 le G S N	ydney 79 Magowa Birraween ISW 2145 Tel: +61 2 99 IATA# 1261	00 840	00	Mitche ACT 2	2 Dacr II 911	e Stree 13 809	t 1, N G 1 T	isbane Newcastle 21 Smallwood Place 4/52 Industrial urarrie Mayfield East I LD 4172 PO Box 60 Wi al: +61 7 3902 4600 Tel: +61 2 496 ATA# 1261 Site# 20794 NATA# 1261 S	NSW 2304 ckham 2293 8 8448	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
	mpany Name: dress:		Pacific High		SE STANTEC	;		Rep	der N port # one: c:		(5 67700 9 3902		Received: Due: Priority: Contact Name:	Feb 4, 2022 8:30 A Feb 11, 2022 5 Day Kosta Sykiotis	Μ
	oject Name: oject ID:	BLUEYS BE 50522033	ACH											E	Eurofins Analytical Se	ervices Manager : l	Jrsula Long
		Sa	ample Detail					HOLD	Acid Sulfate Soils Field pH Test	Eurofins Suite B15	Moisture Set	ENM Exemption Suite -The excavated natural material order 2014 NSW					
			Sito # 18217	,			x	х	х	х	х	х					
Svdr	ney Laboratory	- NATA # 1261	JILE # 10211														
	ney Laboratory rnal Laboratory		Site # 10217														
Exte			1	Matrix	LAB II	2											
Exte No	rnal Laboratory	1	Sampling	Matrix Soil	LAB II N22-Fe088		x			X	x	x					
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling			76	x			X X	x x	x x x					
Exte No	Sample ID	Sample Date	Sampling	Soil	N22-Fe088	76 2 77 2	-										
Exte No 1 2 3	rnal Laboratory Sample ID ES1 ES2	Sample Date Jan 24, 2022 Jan 24, 2022	Sampling	Soil Soil	N22-Fe088 N22-Fe088	76 2 77 2 78 2	x			Х	Х	Х					
Exte No 1 2 3 4	rnal Laboratory Sample ID ES1 ES2 ES3	Sample Date Jan 24, 2022 Jan 24, 2022 Jan 24, 2022	Sampling	Soil Soil Soil	N22-Fe088 N22-Fe088 N22-Fe088	76 2 77 2 78 2 79 2	x x			X X	X X	X X					
Exte No 1 2 3 4 5	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5 ES6	Sample Date Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil Soil	N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088	76 2 77 2 78 2 79 2 80 2	x x x			X X X	X X X	X X X					
Exte No 1 2 3 4 5 6	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5	Sample Date Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil	N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088	76 2 77 2 78 2 79 2 80 2 81 2	x x x x		x	X X X X	X X X X	X X X X					
Exte No 1 2 3 4 5	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5 ES6	Sample Date Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil Soil	N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088	76 2 77 2 78 2 79 2 80 2 81 2	x x x x		x	X X X X	X X X X	X X X X					
Exte No 1 2 3 4 5 5 6 7 8	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5 ES6 ASS1	Sample Date Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil Soil Soil	N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088 N22-Fe088	76 2 77 2 78 2 79 2 80 2 81 2 82 83	x x x x			X X X X	X X X X	X X X X					
Exte No 1 2 3 4 5 6 7 8 9	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5 ES6 ASS1 ASS2	Sample Date Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil Soil Soil Soil	N22-Fe088	76 2 77 2 78 2 79 2 80 2 81 2 82 83 83 84	x x x x		Х	X X X X	X X X X	X X X X					
Exte No 1 2 3 3 4 5 5 6 7 8 8 9 9	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5 ES6 ASS1 ASS2 ASS3	Sample Date Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil Soil Soil Soil	N22-Fe088	76 2 77 2 78 2 79 2 80 2 81 2 82 83 84 85	x x x x		X X	X X X X	X X X X	X X X X					
Exte No 1 2 3 4 5 6 7	rnal Laboratory Sample ID ES1 ES2 ES3 ES4 ES5 ES6 ASS1 ASS2 ASS3 ASS4	Sample Date Jan 24, 2022 Jan 24, 2022	Sampling	Soil Soil Soil Soil Soil Soil Soil Soil	N22-Fe088 N22-Fe088	76 2 77 2 78 2 80 2 81 2 82 83 84 85 86 9	x x x x		X X X	X X X X	X X X X	X X X X					

the ourof	inc	Eurofins Environm ABN: 50 005 085 521	ent Testing Austr	alia Pty Ltd									Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 9429046024954	nent Testing NZ Ltd
web: www.eurofins.com.au email: EnviroSales@eurofins.co		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 125	Geelong 19/8 Lewalan Stree Grovedale VIC 3216 Tel: +61 3 8564 50 4 NATA# 1261 Site#	Girrawee NSW 21 00 Tel: +61	gowar Ro en 45 2 9900 8	8400	Mitche ACT 2 Tel: +	,2 Dacr ell 2911	e Stree 13 809	t 1 N C	Brisbane /21 Smallwood Place /urarrie ∖LD 4172 el: +61 7 3902 4600 IATA# 1261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	•	SW/ACT) Pty Ltd Pl 3 Pacific Highway s	LEASE USE STA	NTEC		Re Pl	rder N eport = none: ax:		(5 067700 99 3902		Received: Due: Priority: Contact Name:	Feb 4, 2022 8:30 A Feb 11, 2022 5 Day Kosta Sykiotis	١M
Project Name: Project ID:	BLUEYS BI 50522033	EACH											Eurofins Analytical Se	ervices Manager :	Ursula Long
	S	ample Detail			Asbestos - AS4964	HOLD	Acid Sulfate Soils Field pH Test	Eurofins Suite B15	Moisture Set	ENM Exemption Suite - The excavated natural material order 2014 NSW					
Sydney Laboratory - N					Х	X	Х	Х	Х	Х	_				
14ES8JacobiaTest Counts	an 24, 2022	Soil	N22-	Fe08889	6	X 2	6	6	6	6					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

U IIIIU		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millili	tres NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			•			
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank		4 0.0		0.0	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank	iiig/kg	< 20		20	1 433	
Polycyclic Aromatic Hydrocarbons				1		
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene		1		0.5	Pass	
	mg/kg	< 0.5				
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Total PAH*	mg/kg	-		0.5	N/A	
Method Blank		1	1		r	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
а-НСН	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242 Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1246 Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254 Aroclor-1260		< 0.1	0.1	Pass	
Total PCB*	mg/kg	1			
Method Blank	mg/kg	< 0.005	0.1	Pass	<u> </u>

Test			Units	Result 1	A	Acceptance Limits	Pass Limits	Qualifying Code
Conductivity (1:5 aqueous extract a	at 25 °C as rec.)		uS/cm	< 10		10	Pass	
LCS - % Recovery	,							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions						
TRH C6-C9			%	87		70-130	Pass	
LCS - % Recovery				-				
BTEX								
Benzene			%	84		70-130	Pass	
Toluene			%	77		70-130	Pass	
Ethylbenzene			%	81		70-130	Pass	
m&p-Xylenes			%	84		70-130	Pass	
o-Xylene			%	85		70-130	Pass	
Xylenes - Total*			%	84		70-130	Pass	
LCS - % Recovery			70	1 04		10100	1 435	
Total Recoverable Hydrocarbons	- 2012 NEPM Eraci	tions						
Naphthalene			%	83		70-130	Pass	
TRH C6-C10			%	86		70-130	Pass	
		04	70	00			Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Limits	Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1				
TRH C6-C9	S22-Fe08498	NCP	%	86		70-130	Pass	
TRH C10-C14	S22-Fe08271	NCP	%	121		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S22-Fe08498	NCP	%	88		70-130	Pass	
Toluene	S22-Fe08498	NCP	%	81		70-130	Pass	
Ethylbenzene	S22-Fe08498	NCP	%	83		70-130	Pass	
m&p-Xylenes	S22-Fe08498	NCP	%	84		70-130	Pass	
o-Xylene	S22-Fe08498	NCP	%	85		70-130	Pass	
Xylenes - Total*	S22-Fe08498	NCP	%	84		70-130	Pass	
Spike - % Recovery	0221000430		70	04		70 100	1 435	
Total Recoverable Hydrocarbons	- 2013 NEPM Eract	tions		Result 1				
Naphthalene	S22-Fe08498	NCP	%	103		70-130	Pass	
TRH C6-C10	S22-Fe08498	NCP	%	86		70-130	Pass	
Spike - % Recovery	022-1 000430		70	00		70-150	1 455	
Polycyclic Aromatic Hydrocarbon				Result 1				
	S22-Fe08275	NCP	%	99		70-130	Pass	
Benzo(g.h.i)perylene			%					
Benzo(k)fluoranthene	S22-Fe08275	NCP		97		70-130	Pass	
Dibenz(a.h)anthracene Indeno(1.2.3-cd)pyrene	S22-Fe08275 S22-Fe08275	NCP	%	101		70-130	Pass	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	322-FEU02/5	NCP	%	104		70-130	Pass	
Spike - % Recovery				Bocult 1				
Organochlorine Pesticides	C00 F00075	NOD	0/	Result 1		70.400	Dect	
4.4'-DDD	S22-Fe08275	NCP	%	107		70-130	Pass	
Aldrin	S22-Fe08275	NCP	%	106		70-130	Pass	
Spike - % Recovery				Decult 1				
Organophosphorus Pesticides	000 F-00075	NOD	0/	Result 1		70.400	Deel	
Diazinon	S22-Fe08275	NCP	%	108	+	70-130	Pass	
Methyl parathion	S22-Fe08275	NCP	%	102	+	70-130	Pass	
Mevinphos	S22-Fe08275	NCP	%	99		70-130	Pass	
Spike - % Recovery								
Polychlorinated Biphenyls				Result 1				
Aroclor-1260	S22-Fe08275	NCP	%	107		70-130	Pass	
Spike - % Recovery					1 1			
Total Recoverable Hydrocarbons		1		Result 1				
TRH >C10-C16	S22-Fe08271	NCP	%	118		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acc	eptance _imits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbor	IS			Result 1				
Acenaphthene	N22-Fe08878	CP	%	79	7	' 0-130	Pass	
Acenaphthylene	N22-Fe08878	CP	%	74	7	70-130	Pass	
Anthracene	N22-Fe08878	CP	%	72	7	70-130	Pass	
Benz(a)anthracene	N22-Fe08878	CP	%	101	7	'0-130	Pass	
Benzo(a)pyrene	N22-Fe08878	CP	%	76	7	'0-130	Pass	
Benzo(b&j)fluoranthene	N22-Fe08878	CP	%	95	7	'0-130	Pass	
Chrysene	N22-Fe08878	CP	%	78	7	70-130	Pass	
Fluoranthene	N22-Fe08878	CP	%	82	7	70-130	Pass	
Fluorene	N22-Fe08878	CP	%	86	7	70-130	Pass	
Naphthalene	N22-Fe08878	CP	%	74		70-130	Pass	
Phenanthrene	N22-Fe08878	CP	%	81		70-130	Pass	
Pyrene	N22-Fe08878	CP	%	80		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Chlordanes - Total	N22-Fe08878	CP	%	118	7	70-130	Pass	
4.4'-DDE	N22-Fe08878	CP	%	127		70-130	Pass	
4.4'-DDT	N22-Fe08878	CP	%	111		′0-130	Pass	
a-HCH	N22-Fe08878	CP	%	114		70-130	Pass	
b-HCH	N22-Fe08878	CP	%	125		70-130	Pass	
d-HCH	N22-Fe08878	CP	%	117		70-130	Pass	
Dieldrin	N22-Fe08878	CP	%	119		70-130	Pass	
Endosulfan I	N22-Fe08878	CP	%	123		70-130	Pass	
Endosulfan II	N22-Fe08878	CP	%	99		70-130	Pass	
Endosulfan sulphate	N22-Fe08878	CP	%	106		70-130	Pass	
Endrin	N22-Fe08878	CP	%	116		70-130	Pass	
Endrin aldehyde	N22-Fe08878	CP	%	109		70-130	Pass	
Endrin ketone	N22-Fe08878	CP	%	105		70-130	Pass	
g-HCH (Lindane)	N22-Fe08878	CP	%	112		70-130	Pass	
Heptachlor	N22-Fe08878	CP	%	112		0-130 70-130	Pass	
Heptachlor epoxide	N22-Fe08878	CP	%	120		0-130 70-130	Pass	
Heptachlorobenzene	N22-Fe08878	CP	%				Pass	
		CP	%	125 93		70-130	Pass	
Methoxychlor Spike - % Recovery	N22-Fe08878	UP UP	70	93		70-130	Pass	
Organophosphorus Pesticides				Result 1				
Dimethoate	N22-Fe08878	СР	%	101	7	′0-130	Pass	
Ethion	N22-Fe08878	CP	%	123		'0-130	Pass	
		CP						
Fenitrothion	N22-Fe08878	UP UP	%	111		70-130	Pass	
Spike - % Recovery				Deput 1				
Polychlorinated Biphenyls	NO0 E-00070		0/	Result 1		0 4 0 0	Deee	
Aroclor-1016	N22-Fe08878	CP	%	115		70-130	Pass	
Spike - % Recovery				Desilit				
Heavy Metals		0.5	0/	Result 1			D	
Arsenic	N22-Fe08880	CP	%	88		75-125	Pass	
Cadmium	N22-Fe08880	CP	%	97		75-125	Pass	
Chromium	N22-Fe08880	CP	%	94		75-125	Pass	
Copper	N22-Fe08880	CP	%	98		75-125	Pass	
Lead	N22-Fe08880	CP	%	85		75-125	Pass	
Mercury	N22-Fe08880	CP	%	78		75-125	Pass	
Nickel	N22-Fe08880	CP	%	94		75-125	Pass	
Zinc	N22-Fe08880	CP	%	98	7	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	4			1			-		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S22-Fe10331	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S22-Fe08595	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S22-Fe08595	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S22-Fe08595	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	·								
втех				Result 1	Result 2	RPD			
Benzene	S22-Fe10331	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Fe10331	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Fe10331	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Fe10331	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Fe10331	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Fe10331	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S22-Fe10331	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Fe10331	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	1			, <u> </u>					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S22-Fe08595	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S22-Fe08595	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S22-Fe08595	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	1			1					
				Result 1	Result 2	RPD			
% Moisture	N22-Fe08864	NCP	%	13	12	8.0	30%	Pass	
Duplicate	1			1	<u> </u>				
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N22-Fe08876	CP	mg/kg	5.3	31	140	30%	Fail	Q15
Cadmium	N22-Fe08876	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N22-Fe08876	CP	mg/kg	5.9	13	77	30%	Fail	Q15
Copper	N22-Fe08876	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	N22-Fe08876	CP	mg/kg	10	21	69	30%	Fail	Q15
Mercury	N22-Fe08876	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N22-Fe08876	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	N22-Fe08876	CP	mg/kg	28	12	82	30%	Fail	Q15
Duplicate	1			<u> </u>	JJ				
Polycyclic Aromatic Hydrocarbor	າຣ			Result 1	Result 2	RPD			
Acenaphthene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
									[
	N22-Fe08877	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	1
Naphthalene Phenanthrene	N22-Fe08877 N22-Fe08877	CP CP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	N22-Fe08877	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	N22-Fe08877	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			1		
Organophosphorus Pesticide	s			Result 1	Result 2	RPD			
Azinphos-methyl	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	N22-Fe08877	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	N22-Fe08877	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	N22-Fe08877	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate				_									
Organophosphorus Pesticides				Result 1	Result 2	RPD							
Tetrachlorvinphos	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass					
Tokuthion	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass					
Trichloronate	N22-Fe08877	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass					
Duplicate													
Polychlorinated Biphenyls		Result 1	Result 2	RPD									
Aroclor-1016	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1221	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1232	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1242	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1248	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1254	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1260	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Total PCB*	N22-Fe08877	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Duplicate													
				Result 1	Result 2	RPD							
Conductivity (1:5 aqueous extract at 25 °C as rec.)	N22-Fe08877	СР	uS/cm	22	20	8.2	30%	Pass					
pH (1:5 Aqueous extract at 25 °C as rec.)	N22-Fe08877	СР	pH Units	5.5	5.3	<1	30%	Pass					
Duplicate				-			-						
Heavy Metals				Result 1	Result 2	RPD							
Arsenic	N22-Fe08879	CP	mg/kg	3.6	2.6	33	30%	Fail	Q15				
Cadmium	N22-Fe08879	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass					
Chromium	N22-Fe08879	CP	mg/kg	5.0	< 5	1.0	30%	Pass					
Copper	N22-Fe08879	CP	mg/kg	< 5	< 5	<1	30%	Pass					
Lead	N22-Fe08879	CP	mg/kg	9.9	9.0	10	30%	Pass					
Mercury	N22-Fe08879	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Nickel	N22-Fe08879	CP	mg/kg	< 5	< 5	<1	30%	Pass					
Zinc	N22-Fe08879	CP	mg/kg	6.5	5.8	11	30%	Pass					

Comments

V3 created to update Sampling Date and separate results as per client request.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Quinn Raw	Analytical Services Manager
Dilani Samarakoon	Senior Analyst-Inorganic
Gabriele Cordero	Senior Analyst-Inorganic
John Nguyen	Senior Analyst-Metal
Laxman Dias	Senior Analyst-Asbestos
Sayeed Abu	Senior Analyst-Asbestos

11 July

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521	
Melbourne	
6 Monterey Road	

Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
NATA # 1261 Site # 20794

www.eurofins.com.au ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Limited NZBN: 9429046024954

EnviroSales@eurofins.com

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name:	Kosta Sykiotis
Project name:	BLUEYS BEACH
Project ID:	50522033
Turnaround time:	5 Day
Date/Time received	Feb 4, 2022 8:30 AM
Eurofins reference	860815

Sample Information

1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Newcastle

4/52 Industrial Drive

Mayfield East NSW 2304

PO Box 60 Wickham 2293

NATA # 1261 Site # 25079

Phone : +61 2 4968 8448

- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. /
- X Split sample sent to requested external lab.
- Some samples have been subcontracted. X
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Ursula Long on phone : or by email: UrsulaLong@eurofins.com Results will be delivered electronically via email to Kosta Sykiotis - kosta.sykiotis@cardno.com.au. Note: A copy of these results will also be delivered to the general Cardno (NSW/ACT) Pty Ltd email address.

Global Leader - Results you can trust

	oupue	Future	aboratory	detailed					luired	bring bring				2010 100 100 100 100 100 100 100 100 100									Custody Seals Intact? / Samples Received Chilled? 8.5%
	-	Shaping the Future	Samples dropped to Eurofins Laboratory	ASS samples for detailed testing.	kosta svkiotis@cardno com au				Analysis Required	icid Sulphate										14414111414144444111441441141141142) THE REAL PROPERTY IN THE PROPERTY OF A DESIGNMENT OF A DESIGNAL DESIGNMENT OF A DESIGNAL DESIGN		oles Receive
	Ľ	Shap	dropped t	iold ASS ter	svkintis/	om.au)		,		Sr8 əjini	the second										Telebatirtei tare un vasaase pervoor ad		t? / Samj
/	1		amples (Please hold	kosts	ardno.co				vite R17 (exclude) oreign Materials)				X				2 2000 2000 2000 2000 2000 2000 2000 2	10000000000000000000000000000000000000	11) 111 March 14 March 100 100	and the second s	11 E C C C C C C C C C C C C C C C C C C	als intac
			Š	ш		otis@ce				Other - Ziplock					mungenenenenenen E			ans@monumericality	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second se	TURNER PROPERTY IN CONTRACTOR		ody Se
					1	(invoice to kosta.sykiotis@cardno.com.au)).21 (P) NaOH Blue 3ed 221 (P) NaOH Blue	1		1140141741741001001001001001001001001001000	N IN IN INVESTIGATION AND AND AND AND AND AND AND AND AND AN					2	AN WINDOW DO	2 1941-1942 INTERector International Advances		Cust
	C		0249 654555	0249 654666		oice to k	Standard TAT		rvation	C2-1 (G) H2C4 (G) H2C04 Naroon 1.1-0.2 (P) Hittered??	2 V			141440001001001000000	aton Prevenue and and			1111011001001001001001001001000000			22 22 24 Kinet bel 22 24		×-3C
			0249 (0249 ((invo	Stands		s/Prese).1-1.0 litre (P) H₂SO₄ Maroon													2022
							ired		Containers/Preservation	0mL VOA Via l (G) 1₂SO₄ Maroon				1410410410410410410410410410410410410410		1.001 141 141 141 141 141 141 141 141 141			E Hoarsersdrietairissessesses	1007104104104104104104104104110411			4/02/2022
			nbers				Date Results Required	Ċ	Ĭ	.1-1.0 litre (P) Nat. Green		newsen and the second s	anning annotan an a			oportumente de la constante de		100 000 000 000 000 000 000 000 000 000	The second secon	E Letter um um con sou (NC) Mélon (NC) Z	Ali Mai ta Ja Mai cam chi moto a Acta a		19116(IN)
			Contact Numbers Phone				Result			.5-1.0 litre (G) Nat. Yellow	INCOMPANYING INCOM	ALQUER DE LA COMPACTION		110_14/14/14/14/14/14/14/14/14/14/14/14/14/1		11(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1		AGUINNING AND		IN DEVICE IN LATER AND A	Contra mon an indication of the second secon	110,000,000,000,000,000,000,000,000,000	Date/Time
			Contac Phone	Fax	E-mail		Date			Soil Jar (G) Nat. Orange	X		X		X						X		1979 III III III III III III III III III
					_	. —			Matrix	Water		le let de l'est par les la ser les	1 - 111 - 114 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 -		A TRACE AND IN A LOSS OF A REAL PARTY AND A REAL PARTY.		1997 IN COLUMN 2007 INC ON COLUMN 2007	Darlaci (Dr. Da 140 bil barati (Dr. Britik)	n filled delan for a survey of the land bad pad (i	1941 MATERIA MATERIA NATURA DALI	After a real marking has discrete across	51 IM 12.111 I M/ 145341 JAC MICHI 14514	
									BM	Soil	X			X	X		X			X			K.Sykiotis
CORD			td	NSW 2292						Date Sampled	24/01/2022	24/01/2022	24/01/2022	24/01/2022	25/01/2022	25/01/2022	24/01/2022	24/01/2022	24/01/2022	25/01/2022	25/01/2022	25/01/2022	Signature
CHAIN OF CUSTODY RECORD	Eurofins	7/7 Friesan Cl Sandgate NSW 2304	Cardno (NSW/ACT) Pty Ltd PO Box 74	Broadmeadow	Kosta Sykiotis	Kosta Sykiotis	81022051			Client Sample ID	ES1	ES2	ES3	ES4	ES5	ES6	ASS1		ASS3	ASS4	ASS5	ASS6	Kosta Sykiotis
CHAIN OF	LAB Name	Address	Client	F	Contact	Sampled by	Project Ref: 8			Laboratory LIMS ID				20101000000000000000000000000000000000									Received by:

EWS-COC-001/1

EWC

From: Kostandreas Sykiotis <<u>Kosta.Sykiotis@cardno.com.au</u>> Sent: Monday, 7 February 2022 3:06 PM To: Quinn Raw <<u>QuinnRaw@eurofins.com</u>> Subject: RE: Samples from 25/1

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Quinn,

Apologies for the mix up. The job number for these samples is 50522033 and the project name is Blueys Beach. Please hold the additional samples.

Thank you!

Kostandreas Sykiotis GEOTECHNICAL ENGINEER CARDNO

Phone Fax +61 2 4940 5589 Direct +61 2 4940 5589 Address 559 Hunter Street, Newcastle West, New South Wales 2302 Australia

Email kosta.sykiotis@cardno.com.au Web www.cardno.com.au

CONNECT WITH CARDNO in 🔽 👖 🖸

Cardno acknowledges the Traditional Owners of the land upon which we live and work and pay our respects to their Elders past, present and emerging - <u>learn more</u>.

Cardno's management systems are certified to ISO9001 (quality) and AS4801/OHSAS18001 (occupational health and safety)

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

From: Quinn Raw <<u>QuinnRaw@eurofins.com</u>> Sent: Monday, 7 February 2022 3:02 PM To: Kostandreas Sykiotis <<u>Kosta.Sykiotis@cardno.com.au</u>> Subject: RE: Samples from 25/1

Hi Kosta,

Just following up regarding these samples.

I noticed the COC has a different Project Number (81022051) to most of the samples (50522033) and is missing the Project name that's in the name of the file.

There is also two extra samples, ES7 & ES8 which are not on the COC.

I've logged the job with the project number on the COC and the extras on hold. Let me know if you'd like me to change anything.

Cheers!

Kind Regards,

Quinn Raw Sample Receipt Officer (she,her / they,them)

Eurofins Environment Testing Australia Pty Ltd

Unit 7, 7 Friesian Close Sandgate, NSW Australia, 2304 **Mobile:** +61 459 786 036

APPENDIX

UNEXPECTED FINDS PROTOCOL

Unexpected Finds Protocol

Blueys Beach Residential Development, Blueys Beach NSW

50522033-003.1

Prepared for Addenbrooke Pty Ltd

12 August 2022

Contact Information

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035

559 Hunter Street Newcastle West 2302 Australia

Phone +61 2 4965 4555 +61 2 4965 4666 Fax

www.cardno.com

www.stantec.com

Document Information

Prepared for	Addenbrooke Pty Ltd
Project Name	Blueys Beach Residential Development, Blueys Beach NSW
File Reference	81022070-002
Job Reference	50522033-003.1
Date	12 August 2022
Version Number	1

Author(s):

Kosta Sykiotis	Effective Date	12/08/2022
Geotechnical Engineer		
Approved By:		
Dimce Stojanovski	Date Approved	12/08/2022
Senior Scientist		

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	12/08/2022	First Issue to Client	KS	DS

Table of Contents

1	Introdu	1	
	1.1	Scope	1
	1.2	References	1
2	Proced	dure	2
	2.1	General	2
	2.2	Training and Induction of Personnel	2
	2.3	Initial Response	2
	2.4	Skeletal Remains	2
	2.5	Aboriginal Heritage	3
	2.6	Archaeological Heritage	3
	2.7	Potentially Contaminated Soils	3
	2.8	Asbestos Containing Materials	3
	2.9	Summary	3

Appendices

Appendix A Figures

Appendix B Unexpetced Finds Protocol Form

1 Introduction

This Unexpected Finds Protocol (UFP) has been developed for the proposed residential development located at Boomerang Drive, Blueys Beach NSW Lot 23 DP 537919 (the "Site") as shown in Figure 1, attached in Appendix A.

The purpose of the Unexpected Finds Protocol is to document the process for evaluating any unexpected environmental finds during the project, and to specify safety measures to be implemented to manage such circumstances and prevent any adverse environmental and human health impacts.

Stantec have prepared concept design plans titled "Blueys Beach Development – Overall General Arrangement Plan", referenced 50522033-C-1004, revision B, dated 9th May 2022.

Based on subdivision concept design plans, the proposed residential development comprises the following:

- > Creation of 73 residential allotments (Lots A1-A6, B1-B8, C1-C8, D1-D30, E1-E6, F1-F6, G1-G6);
- > Creation of a potential commercial allotment (Lots Z1 and Z2);
- > Construction of internal roads (Roads 1-4) and associated infrastructure;
- > Construction of a proposed roundabout at the intersection of Croll Street, View Street and the Site; and
- > Construction of three proposed basins in the eastern (Y2) and southern (Y1 and Y3) portions of the Site.

The proposed concept layout is shown overlaid over Nearmap imagery on Figure 1 in Appendix A.

1.1 Scope

This Unexpected Finds Protocol (UFP) is specific to the proposed residential development in the portion of Lot 23 DP 537919 located at Boomerang Drive, Blueys Beach NSW as shown in Figure 1, attached in Appendix A. It provides guidance and procedures for dealing with any unexpected finds that may be encountered during the disturbance works carried out on Site.

1.2 References

The following documents have been reviewed in preparation of this Unexpected Finds Protocol:

- > National Parks and Wildlife Act 1974 (NSW)
- > Coroners Act 2009 (NSW)
- > Aboriginal and Torres Strait Islander Heritage Protection Act 1984 (Cth)
- > Heritage Act 1977 (NSW)
- > National Environmental Protection Measure (1999)

2 **Procedure**

2.1 General

The following procedure should be used to assess any unexpected finds that are encountered throughout the duration of the project. Unexpected finds may include but are not limited to heritage items, unidentified filling, odorous or stained soils, and suspected asbestos materials. All Site personnel are required to report any unexpected finds to the site manager, if observed during the course of their works.

2.2 Training and Induction of Personnel

Personnel involved in the project on site are to be inducted to the unexpected finds protocol.

Site inductions would include making workers and site personnel aware of the possibility of unexpected finds. Inductions will also include the immediate course of actions to be taken by workers if they were to find anything, including stopping work, notifying their supervisor immediately and completing the Incident Report forms. The induction should be reinforced at daily toolbox meetings.

2.3 Initial Response

If any unexpected/unidentified material is uncovered during disturbance works, the following procedure should be followed;

- > Cease all works in the immediate area.
- > Identify the category of the find (Contaminated Soils, Heritage, uncovering of Asbestos Materials etc).
- > Delineate and restrict access to the area using fencing and /or appropriate barriers and signage.
- > Ensure appropriate training and PPE is available for any persons required to enter the area.
- > Document the nature of the find.
- > Engage a suitably qualified consultant to assess the unexpected find.
- The consultant will assess the unexpected find and provide advice regarding the preliminary assessment with reference to Sections 4.4 – 4.8 below, which will include the following:
 - The need for further immediate management controls if required;
 - Further assessment and / or remediation works required in accordance with relevant guidelines;
 - Preparation of Remediation Action Plan (RAP) if required or provide clean up advice;
 - If required, clean up strategies of the affected area will be implemented.
 - If appointed, correspondence with a Site Auditor shall be undertaken.

Works within the affected area are not to recommence until it is deemed safe and suitable for works to continue. Written confirmation shall be undertaken by the appropriate consultant following appropriate advice and clean up procedures.

2.4 Skeletal Remains

In the event that skeletal remains are uncovered and the remains are not immediately identifiable as nonhuman remains, a qualified archaeologist should be engaged to determine their origin. If the skeletal remains are identifiable as human remains, the Local Police should be contacted to assess the discovery. Under no circumstances should the skeletal remains be disturbed without prior consultation with the relevant authorities which may include the coroner, police, Office of Environment & Heritage, aboriginal groups or a qualified anthropologist.

2.5 Aboriginal Heritage

In the event that any relic, artefact or material that is suspected of being Aboriginal Heritage is uncovered, works must cease immediately in the area. The Office of Environment and Heritage (OEH) should be notified, as well as the National Parks and Wildlife Service, NSW Police and local Aboriginal Stakeholders.

The Office of Environment and Heritage requires notification and an AHIP permit is required prior to the removal of any Aboriginal artefacts. An AHIP permit is issued under the National Parks and Wildlife Act and applications can be made directly to the OEH.

2.6 Archaeological Heritage

Items of archaeological heritage may be uncovered during disturbance works. Items of archaeological heritage may include Aboriginal artefacts or remains, European artefacts following settlement. European heritage may include items such as roadways (telford & corduroy timber road bases etc), kerbing, culverts, building foundations and tools. A suitably qualified archaeologist should be engaged to assess the find.

2.7 Potentially Contaminated Soils

In the event that any odorous, stained or unidentified soils are uncovered during the site works, a suitable qualified environmental consultant should be engaged to assess the material and the following procedures should apply:

- > Excavation works at that part of the site where suspect soil material was encountered should cease until an inspection by an environmental consultant is carried out;
- > Based on a visual inspection, the consultant will provide guidance on health and safety of remedial works, soil storage and soil disposal to allow construction works to proceed if possible;

Based on sampling and analysis the consultant will provide advice as to any additional requirements (i.e. managed on site or any offsite disposal requirements).

2.8 Asbestos Containing Materials

Contingency measures must be developed to evaluate any unexpected finds of suspected asbestos containing materials. These are to specify safety measures that can be implemented to manage and prevent any adverse environmental and human health impacts. Appropriate contingency measures in relation to asbestos impacted soils and suspected asbestos containing materials (ACM) include:

- Where suspected ACM is encountered excavation works must cease until an inspection by an environmental consultant is carried out;
- > Any illegal dumping containing suspected asbestos bearing material or synthetic mineral fibres should be inspected by an environmental consultant.

Following a visual inspection; and sampling if necessary, the consultant will provide interim advice on health and safety requirements to allow construction works to proceed if possible;

Based on sampling and analysis the consultant will provide advice as to any additional requirements (i.e. management or disposal requirements).

Following an inspection and sampling for laboratory testing (where required), works can continue following the consultants written advice.

2.9 Summary

Where an area is identified as containing an isolated find, works must cease, and an inspection and sampling (where required) shall be undertaken by a suitable qualified consultant in accordance with Sections 2.4 to 2.8.

Works within the area shall only recommence following the advice of the suitable qualified personal.

An Unexpected Finds Protocol procedure form is available in Appendix B.

APPENDIX

) Stantec

ELCIT D NIDmings Build Ceotennical S0522033-CII- Draft Sile Plan- Blueys Beach that		A7 A7 TP015		25 BEACH 20 0 TO SCALE
© Cardno Limited		Drawn Date KS 7/6/2022	Client Addenbrooke Pty Ltd	
This document is produced by Cardno Limited solely for the benefit of and use by the client in	Carcino [®] Shaping the Future	Checked Date IGP 7/6/2022 Designed Date	Project Blueys Beach Residential Development	Status PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES
accordance with the terms of the retainer. Cardno Limited does not and shall not assume any	Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035 Unit 1, 10 Denney Street	Verified Date	Title	Project Number Scale Size 50522033 1:2000 A3
responsibility or liability whatsoever to any third party arising out of any use or reliance by third	Broadmeadow, NSW 2292	Approved	Geotechnical Investigation Figure 1	Drawing Number Revision
party on the content of this document.	Tel: 02 4965 4555 Fax: 02 4965 4666 Web: www.cardno.com.au		Lot Layout Plan	Figure 1 001

APPENDIX

UNEXPETCED FINDS PROTOCOL FORM

) Stantec

UNEXPECTED FINDS PROTOCOL

INCIDENT REPORT FORM

Location of discovery (photographs, location map etc):

Nature of find (contaminated soils, heritage, asbestos etc.):

Action Taken:

Date:

Recorded By: